PySpark Select Columns From DataFrame

In PySpark, select() function is used to select single, multiple, column by index, all columns from the list and the nested columns from a DataFrame, PySpark select() is a transformation function hence it returns a new DataFrame with the selected columns.

First, let’s create a Dataframe.


import pyspark
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()
data = [("James","Smith","USA","CA"),
    ("Michael","Rose","USA","NY"),
    ("Robert","Williams","USA","CA"),
    ("Maria","Jones","USA","FL")
  ]
columns = ["firstname","lastname","country","state"]
df = spark.createDataFrame(data = data, schema = columns)
df.show(truncate=False)

1. Select Single & Multiple Columns From PySpark

You can select the single or multiple columns of the DataFrame by passing the column names you wanted to select to the select() function. Since DataFrame is immutable, this creates a new DataFrame with selected columns. show() function is used to show the Dataframe contents.

Below are ways to select single, multiple or all columns.


df.select("firstname","lastname").show()
df.select(df.firstname,df.lastname).show()
df.select(df["firstname"],df["lastname"]).show()

#By using col() function
from pyspark.sql.functions import col
df.select(col("firstname"),col("lastname")).show()

#Select columns by regular expression
df.select(df.colRegex("`^.*name*`")).show()

2. Select All Columns From List

Sometimes you may need to select all DataFrame columns from a Python list. In the below example, we have all columns in the columns list object.


# Select All columns from List
df.select(*columns).show()

# Select All columns
df.select([col for col in df.columns]).show()
df.select("*").show()

3. Select Columns by Index

Using a python list features, you can select the columns by index.


#Selects first 3 columns and top 3 rows
df.select(df.columns[:3]).show(3)

#Selects columns 2 to 4  and top 3 rows
df.select(df.columns[2:4]).show(3)

4. Select Nested Struct Columns from PySpark

If you have a nested struct (StructType) column on PySpark DataFrame, you need to use an explicit column qualifier in order to select. If you are new to PySpark and you have not learned StructType yet, I would recommend skipping the rest of the section or first Understand PySpark StructType before you proceed.

First, let’s create a new DataFrame with a struct type.


data = [
        (("James",None,"Smith"),"OH","M"),
        (("Anna","Rose",""),"NY","F"),
        (("Julia","","Williams"),"OH","F"),
        (("Maria","Anne","Jones"),"NY","M"),
        (("Jen","Mary","Brown"),"NY","M"),
        (("Mike","Mary","Williams"),"OH","M")
        ]

from pyspark.sql.types import StructType,StructField, StringType        
schema = StructType([
    StructField('name', StructType([
         StructField('firstname', StringType(), True),
         StructField('middlename', StringType(), True),
         StructField('lastname', StringType(), True)
         ])),
     StructField('state', StringType(), True),
     StructField('gender', StringType(), True)
     ])
df2 = spark.createDataFrame(data = data, schema = schema)
df2.printSchema()
df2.show(truncate=False) # shows all columns

Yields below schema output. If you notice the column name is a struct type which consists of columns firstname, middlename, lastname.


root
 |-- name: struct (nullable = true)
 |    |-- firstname: string (nullable = true)
 |    |-- middlename: string (nullable = true)
 |    |-- lastname: string (nullable = true)
 |-- state: string (nullable = true)
 |-- gender: string (nullable = true)

+----------------------+-----+------+
|name                  |state|gender|
+----------------------+-----+------+
|[James,, Smith]       |OH   |M     |
|[Anna, Rose, ]        |NY   |F     |
|[Julia, , Williams]   |OH   |F     |
|[Maria, Anne, Jones]  |NY   |M     |
|[Jen, Mary, Brown]    |NY   |M     |
|[Mike, Mary, Williams]|OH   |M     |
+----------------------+-----+------+

Now, let’s select struct column.


df2.select("name").show(truncate=False)

This returns struct column name as is.


+----------------------+
|name                  |
+----------------------+
|[James,, Smith]       |
|[Anna, Rose, ]        |
|[Julia, , Williams]   |
|[Maria, Anne, Jones]  |
|[Jen, Mary, Brown]    |
|[Mike, Mary, Williams]|
+----------------------+

In order to select the specific column from a nested struct, you need to explicitly qualify the nested struct column name.


df2.select("name.firstname","name.lastname").show(truncate=False)

This outputs firstname and lastname from the name struct column.


+---------+--------+
|firstname|lastname|
+---------+--------+
|James    |Smith   |
|Anna     |        |
|Julia    |Williams|
|Maria    |Jones   |
|Jen      |Brown   |
|Mike     |Williams|
+---------+--------+

In order to get all columns from struct column.


df2.select("name.*").show(truncate=False)

This yields below output.


+---------+----------+--------+
|firstname|middlename|lastname|
+---------+----------+--------+
|James    |null      |Smith   |
|Anna     |Rose      |        |
|Julia    |          |Williams|
|Maria    |Anne      |Jones   |
|Jen      |Mary      |Brown   |
|Mike     |Mary      |Williams|
+---------+----------+--------+

5. Complete Example


import pyspark
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()

data = [("James","Smith","USA","CA"),
    ("Michael","Rose","USA","NY"),
    ("Robert","Williams","USA","CA"),
    ("Maria","Jones","USA","FL")
  ]

columns = ["firstname","lastname","country","state"]
df = spark.createDataFrame(data = data, schema = columns)
df.show(truncate=False)

df.select("firstname").show()

df.select("firstname","lastname").show()

#Using Dataframe object name
df.select(df.firstname,df.lastname).show()

# Using col function
from pyspark.sql.functions import col
df.select(col("firstname"),col("lastname")).show()

data = [(("James",None,"Smith"),"OH","M"),
        (("Anna","Rose",""),"NY","F"),
        (("Julia","","Williams"),"OH","F"),
        (("Maria","Anne","Jones"),"NY","M"),
        (("Jen","Mary","Brown"),"NY","M"),
        (("Mike","Mary","Williams"),"OH","M")
        ]

from pyspark.sql.types import StructType,StructField, StringType        
schema = StructType([
    StructField('name', StructType([
         StructField('firstname', StringType(), True),
         StructField('middlename', StringType(), True),
         StructField('lastname', StringType(), True)
         ])),
     StructField('state', StringType(), True),
     StructField('gender', StringType(), True)
     ])

df2 = spark.createDataFrame(data = data, schema = schema)
df2.printSchema()
df2.show(truncate=False) # shows all columns

df2.select("name").show(truncate=False)
df2.select("name.firstname","name.lastname").show(truncate=False)
df2.select("name.*").show(truncate=False)

This example is also available at PySpark github project.

6. Conclusion

In this article, you have learned select() is a transformation function of the DataFrame and is used to select single, multiple columns, select all columns from the list, select by index, and finally select nested struct columns, you have also learned how to select nested elements from the DataFrame.

Related Articles

Happy Learning !!

NNK

SparkByExamples.com is a Big Data and Spark examples community page, all examples are simple and easy to understand and well tested in our development environment Read more ..

This Post Has 5 Comments

  1. Shaun Ryan

    df[“firstname”] returns a column object of firstname. So in effect is equivalent to col(“firstname”)

  2. Nid

    How to select first N column in a data frame and make it into another data frame ?
    I have a DF with 180 columns and I want to create another DF with first 100 column with out implicitly mention the column name

    1. NNK

      Can you try below?
      df.select(df.columns[:100]).show(3)

  3. lex

    not sure if this an apache spark thing or just a databricks thing but select(df[“firstname”]) works also

    1. NNK

      You are right. You can also use select(df[“firstname”])

Leave a Reply