The StructType and StructField classes in PySpark are used to specify the custom schema to the DataFrame and create complex columns like nested struct, array, and map columns. StructType is a collection of StructField objects that define column name, column data type, boolean to specify if the field can be nullable or not, and metadata.
In this article, I will explain different ways to define the structure of DataFrame using StructType with PySpark examples.
Key Points:
- StructType is a collection or list of StructField objects.
- Defining DataFrame Schemas:
StructType
is commonly used to define the schema when creating a DataFrame, particularly for structured data with fields of different data types. - Nested Structures: You can create complex schemas with nested structures by nesting
StructType
within otherStructType
objects, allowing you to represent hierarchical or multi-level data. - Enforcing Data Structure: When reading data from various sources, specifying a
StructType
as the schema ensures that the data is correctly interpreted and structured. This is important when dealing with semi-structured or schema-less data sources.
Related Articles:
- Using PySpark StructType & StructField with DataFrame
- Defining Nested StructType or struct
- Adding & Changing columns of the DataFrame
- Using SQL ArrayType and MapType
- Creating StructType or struct from Json file
- Creating StructType object from DDL string
- Check if a field exists in a StructType
1. StructType – Defines the structure of the DataFrame
PySpark provides StructType
class from pyspark.sql.types
to define the structure of the DataFrame.
StructType represents a schema, which is a collection of StructField
objects. A StructType
is essentially a list of fields, each with a name and data type, defining the structure of the DataFrame. It allows for the creation of nested structures and complex data types.
PySpark printSchema() method on the DataFrame shows StructType columns as struct
.
2. StructField – Defines the metadata of the DataFrame column
It represents a field in the schema, containing metadata such as the name, data type, and nullable status of the field. Each StructField
object defines a single column in the DataFrame, specifying its name and the type of data it holds.
The StructField
class is also part of pyspark.sql.types
3. Using PySpark StructType & StructField with DataFrame
Regardless of how you create a DataFrame, you have the option to specify the custom schema using the StructType and StructField classes. As highlighted earlier, StructType is a collection of StructFields; with StuctType you have an option to specify the column names, data types, and whether they’re nullable.
With StructField, you can even incorporate nested struct schemas, ArrayType for arrays, and MapType for key-value pairs.
The following example demonstrates a basic example for creating a StructType and StructField for a DataFrame, along with sample data.
# Imports
import pyspark
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField, StringType, IntegerType
spark = SparkSession.builder.master("local[1]") \
.appName('SparkByExamples.com') \
.getOrCreate()
data = [("James","","Smith","36636","M",3000),
("Michael","Rose","","40288","M",4000),
("Robert","","Williams","42114","M",4000),
("Maria","Anne","Jones","39192","F",4000),
("Jen","Mary","Brown","","F",-1)
]
schema = StructType([ \
StructField("firstname",StringType(),True), \
StructField("middlename",StringType(),True), \
StructField("lastname",StringType(),True), \
StructField("id", StringType(), True), \
StructField("gender", StringType(), True), \
StructField("salary", IntegerType(), True) \
])
df = spark.createDataFrame(data=data,schema=schema)
df.printSchema()
df.show(truncate=False)
By running the above snippet, it displays the outputs below.
# Output
root
|-- firstname: string (nullable = true)
|-- middlename: string (nullable = true)
|-- lastname: string (nullable = true)
|-- id: string (nullable = true)
|-- gender: string (nullable = true)
|-- salary: integer (nullable = true)
+---------+----------+--------+-----+------+------+
|firstname|middlename|lastname|id |gender|salary|
+---------+----------+--------+-----+------+------+
|James | |Smith |36636|M |3000 |
|Michael |Rose | |40288|M |4000 |
|Robert | |Williams|42114|M |4000 |
|Maria |Anne |Jones |39192|F |4000 |
|Jen |Mary |Brown | |F |-1 |
+---------+----------+--------+-----+------+------+
4. Defining Nested StructType object struct
To define a nested StructType in PySpark, use inner StructTypes within StructFields. Each nested StructType is a collection of StructFields, forming a hierarchical structure for representing complex data within DataFrames.
In the example below, the “name” column is of data type StructType, indicating a nested structure. This means that the “name” column itself is composed of multiple subfields or attributes, forming a hierarchical structure within the DataFrame.
# Defining schema using nested StructType
structureData = [
(("James","","Smith"),"36636","M",3100),
(("Michael","Rose",""),"40288","M",4300),
(("Robert","","Williams"),"42114","M",1400),
(("Maria","Anne","Jones"),"39192","F",5500),
(("Jen","Mary","Brown"),"","F",-1)
]
structureSchema = StructType([
StructField('name', StructType([
StructField('firstname', StringType(), True),
StructField('middlename', StringType(), True),
StructField('lastname', StringType(), True)
])),
StructField('id', StringType(), True),
StructField('gender', StringType(), True),
StructField('salary', IntegerType(), True)
])
df2 = spark.createDataFrame(data=structureData,schema=structureSchema)
df2.printSchema()
df2.show(truncate=False)
This yields the below schema and the DataFrame
# Output
root
|-- name: struct (nullable = true)
| |-- firstname: string (nullable = true)
| |-- middlename: string (nullable = true)
| |-- lastname: string (nullable = true)
|-- id: string (nullable = true)
|-- gender: string (nullable = true)
|-- salary: integer (nullable = true)
+--------------------+-----+------+------+
|name |id |gender|salary|
+--------------------+-----+------+------+
|[James, , Smith] |36636|M |3100 |
|[Michael, Rose, ] |40288|M |4300 |
|[Robert, , Williams]|42114|M |1400 |
|[Maria, Anne, Jones]|39192|F |5500 |
|[Jen, Mary, Brown] | |F |-1 |
+--------------------+-----+------+------+
5. Adding & Changing struct of the DataFrame
Using PySpark SQL function struct(), we can change the struct of the existing DataFrame and add a new StructType to it. The below example demonstrates how to copy the columns from one structure to another and adding a new column. PySpark Column Class also provides some functions to work with the StructType column.
# Updating existing structtype using struct
from pyspark.sql.functions import col,struct,when
updatedDF = df2.withColumn("OtherInfo",
struct(col("id").alias("identifier"),
col("gender").alias("gender"),
col("salary").alias("salary"),
when(col("salary").cast(IntegerType()) < 2000,"Low")
.when(col("salary").cast(IntegerType()) < 4000,"Medium")
.otherwise("High").alias("Salary_Grade")
)).drop("id","gender","salary")
updatedDF.printSchema()
updatedDF.show(truncate=False)
Here, it copies “gender
“, “salary
” and “id
” to the new struct “otherInfo
” and add’s a new column “Salary_Grade
“.
# Output
root
|-- name: struct (nullable = true)
| |-- firstname: string (nullable = true)
| |-- middlename: string (nullable = true)
| |-- lastname: string (nullable = true)
|-- OtherInfo: struct (nullable = false)
| |-- identifier: string (nullable = true)
| |-- gender: string (nullable = true)
| |-- salary: integer (nullable = true)
| |-- Salary_Grade: string (nullable = false)
6. Using SQL ArrayType and MapType
SQL StructType also supports ArrayType and MapType to define the DataFrame columns for array and map collections, respectively. In the below example, column hobbies
defined as ArrayType(StringType) and properties
defined as MapType(StringType,StringType) meaning both key and value as String.
# Using SQL ArrayType and MapType
arrayStructureSchema = StructType([
StructField('name', StructType([
StructField('firstname', StringType(), True),
StructField('middlename', StringType(), True),
StructField('lastname', StringType(), True)
])),
StructField('hobbies', ArrayType(StringType()), True),
StructField('properties', MapType(StringType(),StringType()), True)
])
Outputs the below schema. Note that field Hobbies
is array type and properties
is map type.
# Output
root
|-- name: struct (nullable = true)
| |-- firstname: string (nullable = true)
| |-- middlename: string (nullable = true)
| |-- lastname: string (nullable = true)
|-- hobbies: array (nullable = true)
| |-- element: string (containsNull = true)
|-- properties: map (nullable = true)
| |-- key: string
| |-- value: string (valueContainsNull = true)
7. Creating StructType object struct from JSON file
Alternatively, you can load the SQL StructType schema from JSON file. To make it simple, I will get the current DataFrmae schems using df2.schema.json()
, store this in a file, and use it to create a schema from this JSON file.
# Using json() to load StructType
print(df2.schema.json())
Yields below output.
{
"type" : "struct",
"fields" : [ {
"name" : "name",
"type" : {
"type" : "struct",
"fields" : [ {
"name" : "firstname",
"type" : "string",
"nullable" : true,
"metadata" : { }
}, {
"name" : "middlename",
"type" : "string",
"nullable" : true,
"metadata" : { }
}, {
"name" : "lastname",
"type" : "string",
"nullable" : true,
"metadata" : { }
} ]
},
"nullable" : true,
"metadata" : { }
}, {
"name" : "dob",
"type" : "string",
"nullable" : true,
"metadata" : { }
}, {
"name" : "gender",
"type" : "string",
"nullable" : true,
"metadata" : { }
}, {
"name" : "salary",
"type" : "integer",
"nullable" : true,
"metadata" : { }
} ]
}
Alternatively, you could also use df.schema.simpleString()
, this will return a relatively simpler schema format.
Now, let’s load the JSON file and use it to create a DataFrame.
# Loading json schema to create DataFrame
import json
schemaFromJson = StructType.fromJson(json.loads(schema.json))
df3 = spark.createDataFrame(
spark.sparkContext.parallelize(structureData),schemaFromJson)
df3.printSchema()
8. Creating StructType object struct from DDL String
To create a StructType object, ‘struct’, from a Data Definition Language (DDL) string in PySpark, use ‘StructType.fromDDL()’. This method parses the DDL string and generates a StructType object that reflects the schema defined in the string.
For example, ‘struct = StructType.fromDDL(“name STRING, age INT”)’ creates a StructType with two fields: ‘name’ of type ‘STRING’ and ‘age’ of type ‘INT’. This allows for dynamic schema creation based on DDL specifications, facilitating seamless integration with external systems or data sources where schema information is defined using DDL.
# Create StructType from DDL String
ddlSchemaStr = "`fullName` STRUCT<`first`: STRING, `last`: STRING,
`middle`: STRING>,`age` INT,`gender` STRING"
ddlSchema = StructType.fromDDL(ddlSchemaStr)
ddlSchema.printTreeString()
9. Check DataFrame Column Exists
To check if a column exists in a PySpark DataFrame, use the ‘contains()’ method on the DataFrame’s ‘columns’ attribute. For example, ‘if “column_name” in df.columns’ checks if the column exists in DataFrame ‘df’. Alternatively, you can use ‘selectExpr()’ with the column name and ‘alias()’ to create a new column with a different name, then check if the new column exists.
# Check if a column exists
if "firstname" in df.columns:
print("Column 'firstname' exists in the DataFrame.")
else:
print("Column 'firstname' does not exist in the DataFrame.")
Alternatively, you can also use.
# Checking Column exists using contains()
print(df.schema.fieldNames.contains("firstname"))
print(df.schema.contains(StructField("firstname",StringType,true)))
This example returns “true” for both scenarios.
10. Complete Example of PySpark StructType & StructField
import pyspark
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField, StringType, IntegerType,ArrayType,MapType
from pyspark.sql.functions import col,struct,when
spark = SparkSession.builder.master("local[1]") \
.appName('SparkByExamples.com') \
.getOrCreate()
data = [("James","","Smith","36636","M",3000),
("Michael","Rose","","40288","M",4000),
("Robert","","Williams","42114","M",4000),
("Maria","Anne","Jones","39192","F",4000),
("Jen","Mary","Brown","","F",-1)
]
schema = StructType([
StructField("firstname",StringType(),True),
StructField("middlename",StringType(),True),
StructField("lastname",StringType(),True),
StructField("id", StringType(), True),
StructField("gender", StringType(), True),
StructField("salary", IntegerType(), True)
])
df = spark.createDataFrame(data=data,schema=schema)
df.printSchema()
df.show(truncate=False)
structureData = [
(("James","","Smith"),"36636","M",3100),
(("Michael","Rose",""),"40288","M",4300),
(("Robert","","Williams"),"42114","M",1400),
(("Maria","Anne","Jones"),"39192","F",5500),
(("Jen","Mary","Brown"),"","F",-1)
]
structureSchema = StructType([
StructField('name', StructType([
StructField('firstname', StringType(), True),
StructField('middlename', StringType(), True),
StructField('lastname', StringType(), True)
])),
StructField('id', StringType(), True),
StructField('gender', StringType(), True),
StructField('salary', IntegerType(), True)
])
df2 = spark.createDataFrame(data=structureData,schema=structureSchema)
df2.printSchema()
df2.show(truncate=False)
updatedDF = df2.withColumn("OtherInfo",
struct(col("id").alias("identifier"),
col("gender").alias("gender"),
col("salary").alias("salary"),
when(col("salary").cast(IntegerType()) < 2000,"Low")
.when(col("salary").cast(IntegerType()) < 4000,"Medium")
.otherwise("High").alias("Salary_Grade")
)).drop("id","gender","salary")
updatedDF.printSchema()
updatedDF.show(truncate=False)
""" Array & Map"""
arrayStructureSchema = StructType([
StructField('name', StructType([
StructField('firstname', StringType(), True),
StructField('middlename', StringType(), True),
StructField('lastname', StringType(), True)
])),
StructField('hobbies', ArrayType(StringType()), True),
StructField('properties', MapType(StringType(),StringType()), True)
])
Find a complete example at the GitHub project.
Conclusion:
In conclusion, PySpark’s StructType and StructField classes offer powerful tools for defining and managing DataFrame schemas. StructType provides a structured approach to organizing data, enabling precise specification of column names, data types, and nullability. Meanwhile, StructField allows for fine-grained control over individual fields within the schema, including nested structures and complex data types.
By leveraging PySpark’s StructType and StructField, users can effectively structure and manipulate data within DataFrames, ensuring consistency and enabling seamless integration with diverse data processing workflows.
Happy Learning !!
Related Articles
- PySpark Select Nested struct Columns
- PySpark Convert StructType (struct) to Dictionary/MapType (map)
- PySpark alias() Column & DataFrame Examples
- PySpark SparkContext Explained
- PySpark Check Column Exists in DataFrame
- PySpark Parse JSON from String Column | TEXT File
- PySpark MapType (Dict) Usage with Examples
- PySpark Convert DataFrame Columns to MapType (Dict)
- PySpark Create DataFrame From Dictionary (Dict)
Hi, can you please post one example for toDDL() in pyspark.
Hi,
Thanks a lot for the wonderful article. It is really helpful. I was wondering if you can clarify if the fromDDL method (#8 example) in pyspark supports data types such as – uniontype, char and varchar. When I pass in the ddl string to convert it into struct object I get an exception saying that the data type is not found. Other data types seem to be working – maps, struct, int, etc.
Appreciate your help.