• Post author:
  • Post category:PySpark
  • Post last modified:March 27, 2024
  • Reading time:9 mins read
You are currently viewing PySpark lit() – Add Literal or Constant to DataFrame

PySpark SQL functions lit() and typedLit() are used to add a new column to DataFrame by assigning a literal or constant value. Both these functions return Column type as return type. typedLit() provides a way to be explicit about the data type of the constant value being added to a DataFrame, helping to ensure data consistency and type correctness of PySpark workflows.

Advertisements

Both of these are available in PySpark by importing pyspark.sql.functions

First, let’s create a DataFrame.


# Imports
# prepare sample Data
import pyspark
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()
data = [("111",50000),("222",60000),("333",40000)]
columns= ["EmpId","Salary"]
df = spark.createDataFrame(data = data, schema = columns)

lit() Function to Add Constant Column

PySpark lit() function is used to add constant or literal value as a new column to the DataFrame.

Creates a [[Column]] of literal value. The passed in object is returned directly if it is already a [[Column]]. If the object is a Scala Symbol, it is converted into a [[Column]] also. Otherwise, a new [[Column]] is created to represent the literal value

Let’s take a look at some examples.

Example 1: Simple usage of lit() function

Let’s see an example of how to create a new column with constant value using lit() Spark SQL function. In the below snippet, we are creating a new column by adding a literal ‘1’ to PySpark DataFrame.


# Usage of lit() 
from pyspark.sql.functions import col,lit
df2 = df.select(col("EmpId"),col("Salary"),lit("1").alias("lit_value1"))
df2.show(truncate=False)

# Output
+-----+------+----------+
|EmpId|Salary|lit_value1|
+-----+------+----------+
|  111| 50000|         1|
|  222| 60000|         1|
|  333| 40000|         1|
+-----+------+----------+

Adding the same constant literal to all records in DataFrame may not be real-time useful so let’s see another example.

Example 2 : lit() function with withColumn

The following example shows how to use pyspark lit() function using withColumn to derive a new column based on some conditions.


# Usage of lit() with withColumn()
from pyspark.sql.functions import when, lit, col
df3 = df2.withColumn("lit_value2", when((col("Salary") >=40000) & (col("Salary") <= 50000),lit("100")).otherwise(lit("200")))
df3.show(truncate=False)

Below is the output for the above code snippet.


# Output
+-----+------+----------+----------+
|EmpId|Salary|lit_value1|lit_value2|
+-----+------+----------+----------+
|  111| 50000|         1|       100|
|  222| 60000|         1|       200|
|  333| 40000|         1|       100|
+-----+------+----------+----------+

typedLit() Function

Difference between lit() and typedLit() is that the typedLit() function can handle collection types e.g.: Array, Dictionary(map), etc. Below is an example usage of typedLit()


# Usage of typedlit() 
df4 = df4.withColumn("lit_value3", typedLit("flag", StringType()))
df4.show(truncate=False)

The above code adds a column lit_value3 with the value being a string type flag.

Complete Example of How to Add Constant Column


import pyspark
from pyspark.sql import SparkSession

spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()
data = [("111",50000),("222",60000),("333",40000)]
columns= ["EmpId","Salary"]
df = spark.createDataFrame(data = data, schema = columns)
df.printSchema()
df.show(truncate=False)

from pyspark.sql.functions import col,lit
df2 = df.select(col("EmpId"),col("Salary"),lit("1").alias("lit_value1"))
df2.show(truncate=False)
from pyspark.sql.functions import when
df3 = df2.withColumn("lit_value2", when(col("Salary") >=40000 & col("Salary") <= 50000,lit("100")).otherwise(lit("200")))
df3.show(truncate=False)

Frequently Asked Questions on lit()

Can lit() be used with different types of constant values?

lit() can be used with various constant values, including strings, integers, floats, and booleans.

How is lit() different from expr() in PySpark?

lit() is used to create a column with a constant literal value, while expr() is more versatile and can be used to express complex transformations and computations involving column expressions.

Can lit() be used to create a binary indicator column?

lit() is often used to create binary indicator columns by assigning a constant value of 1 or 0.
For example:
df = df.withColumn(“is_active”, lit(1))

Conclusion:

You have learned multiple ways to add a constant literal value to DataFrame using PySpark lit() function and have learned the difference between lit and typedLit functions.

When possible try to use predefined PySpark functions as they are a little bit more compile-time safety and perform better when compared to user-defined functions. If your application is critical on performance try to avoid using custom UDF functions as these are not guaranteed on performance.

Happy Learning !!