Pandas DataFrame join()
method doesn’t support joining two DataFrames on columns as join()
is used for indices. However, you can convert column to index and used it on join. The best approach would be using merge()
method when you wanted to join on columns. There are several methods for joining DataFrames in Pandas, but the most commonly used ones are merge()
and join()
.
In this article, I will explain join pandas DataFrames on columns when joining DataFrames where the column names are the same, or when they are different, you can still use the pd.merge()
function with the left_on
and right_on
parameters.
Key Points –
- Pandas allow joining DataFrames on specified columns using the
pd.merge()
function. - Inner, outer, left, and right joins can be performed using different parameters of the
pd.merge()
function. - Specifying the on parameter in
pd.merge()
allows joining DataFrames on specific columns. - Pandas supports joining DataFrames with different column names by specifying
left_on
andright_on
parameters.
Quick Examples of Pandas Join DataFrames on Columns
If you are in a hurry, below are some quick examples of how to join Pandas DataFrames on columns.
# Quick wxamples of pandas join dataframes on columns
# Pandas join on columns
# Use merge() to get efficient results.
df3=df1.set_index('Courses').join(df2.set_index('Courses'), how='inner')
# Merge on common columns
merged_df = pd.merge(df,df1)
# Use pandas.merge() on multiple columns
df2 = pd.merge(df, df1, on=['Courses','Fee'])
# Use pandas.merge() on multiple columns
df2 = pd.merge(df, df1, how='left', left_on=['Courses','Fee'], right_on = ['Courses','Fee'])
# Merge Pandas DataFrames using left_on and right_on
merged_df = pd.merge(df, df1, left_on="Courses", right_on="Courses")
# Set value of on parameter to specify the key value for merge in pandas
merged_df = pd.merge(df, df1, on="Courses")
First, let’s create a Pandas DataFrame using data from a dictionary.
# Create DataFrame
import pandas as pd
df = pd.DataFrame({'Courses': ["Spark","PySpark","Python","pandas","Java"],
'Fee' : [20000,25000,30000,24000,40000],
'Duration':['30days','40days','60days','55days','50days']})
df1 = pd.DataFrame({'Courses': ["Java","PySpark","Python","pandas","Hyperion"],
'Fee': [20000,25000,30000,24000,40000],
'Percentage':['10%','20%','25%','20%','10%']})
print(df)
print(df1)
Yields below output.
# Output:
Courses Fee Duration
0 Spark 20000 30days
1 PySpark 25000 40days
2 Python 30000 60days
3 pandas 24000 55days
4 Java 40000 50days
Courses Fee Percentage
0 Java 20000 10%
1 PySpark 25000 20%
2 Python 30000 25%
3 pandas 24000 20%
4 Hyperion 40000 10%
Pandas Join DataFrames on Columns
By default pandas join() method doesn’t support joining DataFrames on columns, but you can do this by converting the column you wish to join to index. To join on columns, the better approach would be using merge()
.
# Pandas join on columns
df3=df.set_index('Courses').join(df2.set_index('Courses'), how='inner')
print(df3)
Join on All Common Columns of DataFrame
To perform a join on all common columns of two DataFrames, you can simply use the merge()
function without specifying the on
parameter.
The default behavior of the merge() method is to perform a join operation on all columns that exist in both DataFrames and use an inner join.
# Merge default pandas dataframe without any key column
merged_df = pd.merge(df,df1)
print(merged_df)
# Output:
# Courses Fee Duration Percentage
# 0 PySpark 25000 40days 20%
# 1 Python 30000 60days 25%
# 2 pandas 24000 55days 20%
Join on Multiple Columns using merge()
Joining on multiple columns using the merge()
function means that you’re combining two DataFrames based on the values in more than one column. When you specify multiple columns in the on
parameter of the merge()
function, pandas look for rows where the values in all specified columns match between the two DataFrames. Only the rows that satisfy this condition will be included in the resulting DataFrame.
# Use pandas.merge() on multiple columns
df2 = pd.merge(df, df1, on=['Courses','Fee'])
print(df2)
In the above example, pd.merge()
is used to join df
and df1
DataFrames based on multiple columns (Courses
and Fee
). The resulting DataFrame df2
will contain rows where both Courses
and Fee
match in both DataFrames.
When Column Names are Different
When the column names are different between the DataFrames, but you still want to join them based on specific columns, you can use the pd.merge()
function with the left_on
and right_on
parameters. This allows you to specify the columns from each DataFrame that should be used for the join operation.
# Use pandas.merge() to on multiple columns
df2 = pd.merge(df, df1, how='left', left_on=['Courses','Fee'], right_on = ['Courses','Fee'])
print(df2)
# Output:
# Courses Fee Duration Percentage
# 0 Spark 20000 30days NaN
# 1 PySpark 25000 40days 20%
# 2 Python 30000 60days 25%
# 3 pandas 24000 55days 20%
# 4 Java 40000 50days NaN
Complete Example of Join DataFrames
import pandas as pd
df = pd.DataFrame({'Courses': ["Spark","PySpark","Python","pandas","Java"],
'Fee' : [20000,25000,30000,24000,40000],
'Duration':['30days','40days','60days','55days','50days']})
df1 = pd.DataFrame({'Courses': ["Java","PySpark","Python","pandas","Hyperion"],
'Fee': [20000,25000,30000,24000,40000],
'Percentage':['10%','20%','25%','20%','10%']})
print(df)
print(df1)
# Merge default pandas DataFrame without any key column
merged_df = pd.merge(df,df1)
print(merged_df)
# Use pandas.merge() to on multiple columns
df2 = pd.merge(df, df1, how='left', left_on=['Courses','Fee'], right_on = ['Courses','Fee'])
print(df2)
# Merge Pandas DataFrames using left_on and right_on
merged_df = pd.merge(df, df1, left_on="Courses", right_on="Courses")
print(merged_df)
# Set value of on parameter
# To specify the key value for merge in pandas
merged_df = pd.merge(df, df1, on="Courses")
print(merged_df)
Frequently Asked Questions on Join DataFrames on Columns
The purpose of joining DataFrames in Pandas is to combine data from different sources based on common columns or indices. By joining DataFrames, you can create a unified dataset that incorporates relevant information from multiple sources, facilitating comprehensive data analysis, exploration, and manipulation.
Pandas support inner, outer, left, and right joins, which determine how rows from the input DataFrames are combined based on the values in the specified columns.
You can join multiple DataFrames together by chaining multiple pd.merge()
functions or by using the join()
method with DataFrame objects.
You can use the pd.merge()
function to join DataFrames on columns. Specify the on
parameter to specify the column(s) to join on.
Conclusion
In this article, I have explained joining pandas DataFrames on columns with examples. The DataFrame join()
method doesn’t support joining two DataFrames on columns as join()
is used for indices. However, you can convert the column to index and use it on join. The best approach would be using merge()
method when you wanted to join on columns.
Happy Learning !!
Related Articles
- Pandas Join Two DataFrames
- pandas.DataFrame.where() Examples
- Pandas Join Explained With Examples
- Add or Insert Row to DataFrame
- pandas rolling() Mean, Average, Sum Examples
- Differences between Pandas Join vs Merge
- Pandas Difference Between Two DataFrames
- How to Union Pandas DataFrames using Concat?