• Post author:
  • Post category:Pandas
  • Post last modified:May 6, 2024
  • Reading time:17 mins read
You are currently viewing Pandas Get Statistics For Each Group?

How to get statistics for each group (such as count, mean, max, min, etc.) using pandas GroupBy? You can achieve this by using groupby() method and agg() function.

Advertisements

In this article, you can learn pandas.DataFrame.groupby() to group the single column, two, or multiple columns and get the size()count()  for each group combination. groupBy() function is used to collect the identical data into groups and perform aggregate functions like size/count on the grouped data.

In Pandas, you can use groupby() with the combination of count()size(), mean(), min(), max() and more methods.

Key Points –

  • Utilize the groupby() function in Pandas to group data based on specified criteria.
  • Pandas enables grouping data by specific criteria using the groupby() function, facilitating analysis at a granular level.
  • Apply statistical aggregation functions like mean(), median(), sum(), min(), max(), etc., to compute statistics within each group.
  • Pandas’ agg() function allows customization by accepting a dictionary mapping columns to the desired aggregation functions.
  • Combine groupby operations with other Pandas functionalities like filtering, sorting, and visualization to gain insights from grouped data efficiently.

Quick Examples of Pandas Get Statistics For Each Group

If you are in a hurry, below are some quick examples of pandas get statistics for each group.


# Quick examples of pandas get statistics for each group

# Use DataFrame.size()
df2=df.groupby(['Courses','Duration'])
df2=df.groupby(['Courses', 'Duration']).size().reset_index(name='counts'))

# Pandas groupby() with agg() method
df2 = df.groupby(['Courses', 'Duration']).agg(['mean', 'count'])

# Pandas get statistics Using groupby().describe()
df2=df.groupby(['Courses', 'Duration'])['Discount'].describe()

# Pandas DataFrame.groupby() and describe() function
df2=df.groupby(['Courses', 'Duration'])['Discount'].describe()[['count', 'mean']]

# Get statistics by DataFrame.value_counts
df2=df.value_counts(subset=['Courses', 'Duration'])

# Using groupby() and agg() function
df2 = df.groupby(['Courses','Duration']).agg(['mean', 'count'])
df.columns = [ ' '.join(str(i) for i in col) for col in df.columns]
df.reset_index(inplace=True)

Now, let’s create a DataFrame with a few rows and columns, execute these examples, and validate the results. Our DataFrame contains column names CoursesFeeDuration, and Discount.


# Create a DataFrame.
import pandas as pd
technologies   = ({
    'Courses':["Spark","PySpark","Hadoop","Python","Hadoop","Hadoop","Spark","Python","Spark"],
    'Fee' :[22000,25000,23000,24000,26000,25000,25000,22000,25000],
    'Duration':['30days','50days','55days', '40days','55days','35days','30days','40days','40days'],
    'Discount':[1000,2300,1000,1200,2500,1200,1400,1000,1200]
          })
df = pd.DataFrame(technologies)
print(df)

Yields below output.


# Output:
   Courses    Fee Duration  Discount
0    Spark  22000   30days      1000
1  PySpark  25000   50days      2300
2   Hadoop  23000   55days      1000
3   Python  24000   40days      1200
4   Hadoop  26000   55days      2500
5   Hadoop  25000   35days      1200
6    Spark  25000   30days      1400
7   Python  22000   40days      1000
8    Spark  25000   40days      1200

Pandas groupby() with size() to Get Column Counts

Use DataFrame.groupby() to group the rows and use size() to get the count on each group. The size property is used to get an int representing the number of elements in this object. For the Series object, it returns the number of rows. For the DataFrame object, it returns the number of rows times the number of columns (rows * columns).


# Use DataFrame.size()
df2=df.groupby(['Courses','Duration'])
df2=df.groupby(['Courses', 'Duration']).size().reset_index(name='counts')
print(df2)

Yields below output. Note the groupby() method returns the pandas.core.groupby.generic.DataFrameGroupBy. reset_index(name='counts') is used to set the label name for the size column.


# Output:
   Courses Duration  counts
0   Hadoop   35days       1
1   Hadoop   55days       2
2  PySpark   50days       1
3   Python   40days       2
4    Spark   30days       2
5    Spark   40days       1

Pandas groupby() with agg() Method

Alternatively, you can also use groupby() method and use agg() function to the size/count. The agg() method allows you to apply a function or a list of function names to be executed along with one of the axis of the DataFrame, axis by default set to 0, which is the index (row) axis.

To get the counts and mean for each group combination use count and mean aggregations.


# Pandas .groupby() and using agg() Method.
df2 = df.groupby(['Courses', 'Duration']).agg(['mean', 'count'])
print(df2)

Yields below output.


# Output:
                     Fee       Discount      
                     mean count     mean count
Courses Duration                              
Hadoop  35days    25000.0     1   1200.0     1
        55days    24500.0     2   1750.0     2
PySpark 50days    25000.0     1   2300.0     1
Python  40days    23000.0     2   1100.0     2
Spark   30days    23500.0     2   1200.0     2
        40days    25000.0     1   1200.0     1

Pandas Get Statistics Using groupby().describe()

In this section, we can get statistics using groupby().describe() function. The describe() function is used as a summarization tool that quickly displays statistics for any variable or group it is applied to. The describe() output varies depending on whether you apply it to a numeric or character column.


# Pandas Get Statistics Using groupby().describe()
df2=df.groupby(['Courses', 'Duration'])['Discount'].describe()
print(df2)

Yields below output.


# Output:

                  count    mean          std  ...     50%     75%     max
Courses Duration                              ...                        
Hadoop  35days      1.0  1200.0          NaN  ...  1200.0  1200.0  1200.0
        55days      2.0  1750.0  1060.660172  ...  1750.0  2125.0  2500.0
PySpark 50days      1.0  2300.0          NaN  ...  2300.0  2300.0  2300.0
Python  40days      2.0  1100.0   141.421356  ...  1100.0  1150.0  1200.0
Spark   30days      2.0  1200.0   282.842712  ...  1200.0  1300.0  1400.0
        40days      1.0  1200.0          NaN  ...  1200.0  1200.0  1200.0

You can just use the built-in function count() and mean() follow by the DataFrame.groupby() and describe() function.


# Pandas DataFrame.groupby() and describe() function.
df2=df.groupby(['Courses', 'Duration'])['Discount'].describe()[['count', 'mean']]
print(df2)

Yields below output.


# Output:
                  count    mean
Courses Duration               
Hadoop  35days      1.0  1200.0
        55days      2.0  1750.0
PySpark 50days      1.0  2300.0
Python  40days      2.0  1100.0
Spark   30days      2.0  1200.0
        40days      1.0  1200.0

Get Statistics of Each Group by DataFrame.value_counts

To get Pandas statistics of each group by DataFrame.value_counts. The value_counts() function is used to get a Series containing counts of unique values.


# Get statistics by DataFrame.value_counts.
df2=df.value_counts(subset=['Courses', 'Duration'])
print(df2)

Yields below output.


# Output:
Courses  Duration
Hadoop   55days      2
Python   40days      2
Spark    30days      2
Hadoop   35days      1
PySpark  50days      1
Spark    40days      1
dtype: int64

Other Examples

In this section, To get multiple stats, collapse the index, and retain column names. For example-


# Using groupby() and agg() function.
df2 = df.groupby(['Courses','Duration']).agg(['mean', 'count'])
df.columns = [ ' '.join(str(i) for i in col) for col in df.columns]
df.reset_index(inplace=True)
print(df2)

Yields below output.


# Output:
Courses  Duration
Hadoop   55days      2
Python   40days      2
Spark    30days      2
Hadoop   35days      1
PySpark  50days      1
Spark    40days      1
dtype: int64

Complete Examples


# Create a DataFrame
import pandas as pd
technologies   = ({
    'Courses':["Spark","PySpark","Hadoop","Python","Hadoop","Hadoop","Spark","Python","Spark"],
    'Fee' :[22000,25000,23000,24000,26000,25000,25000,22000,25000],
    'Duration':['30days','50days','55days', '40days','55days','35days','30days','40days','40days'],
    'Discount':[1000,2300,1000,1200,2500,1200,1400,1000,1200]
          })
df = pd.DataFrame(technologies)
print(df)

# Use DataFrame.size()
df2=df.groupby(['Courses','Duration'])
df2=df.groupby(['Courses', 'Duration']).size().reset_index(name='counts'))

# Pandas groupby() with agg() method
df2 = df.groupby(['Courses', 'Duration']).agg(['mean', 'count'])

# Pandas Get Statistics Using groupby().describe()
df2=df.groupby(['Courses', 'Duration'])['Discount'].describe()

# Pandas DataFrame.groupby() and describe() function
df2=df.groupby(['Courses', 'Duration'])['Discount'].describe()[['count', 'mean']]

# Get statistics by DataFrame.value_counts
df2=df.value_counts(subset=['Courses', 'Duration'])

# Using groupby() and agg() function
df2 = df.groupby(['Courses','Duration']).agg(['mean', 'count'])
df.columns = [ ' '.join(str(i) for i in col) for col in df.columns]
df.reset_index(inplace=True)

Frequently Asked Questions on Get Statistics For Each Group

What is the purpose of grouping data in Pandas?

Grouping data in Pandas allows for analyzing subsets of data based on specific criteria. It’s particularly useful for computing statistics or applying functions to each group separately.

What kind of statistics can I compute for each group in Pandas?

Pandas offer a variety of statistical aggregation functions such as mean(), median(), sum(), min(), max(), std(), var(), and more. These functions provide insights into the characteristics of each group.

Can I compute multiple statistics for each group simultaneously?

You can compute multiple statistics for each group simultaneously in Pandas. One common way to achieve this is by using the agg() function, which allows you to specify multiple aggregation functions for each column within each group.

Is it possible to visualize the statistics computed for each group?

It is possible to visualize the statistics computed for each group in Pandas. After computing the statistics using methods like groupby() and agg(), you can use various plotting functions available in Pandas or integrate with visualization libraries like Matplotlib or Seaborn to create visual representations of the data.

Can I apply custom functions to compute statistics for each group?

You can apply custom functions to compute statistics for each group in Pandas. This can be done by defining your own custom aggregation function and then passing it to the agg() method within the groupby() operation.

Conclusion

In this article, I have explained how to groupby() single and multiple columns and get counts, size, max, min, and mean for each group from Pandas DataFrame. Also, learn how to get the stats using describe() build-in function.

References

Leave a Reply