• Post author:
  • Post category:Pandas
  • Post last modified:May 7, 2024
  • Reading time:6 mins read
You are currently viewing Pandas.to_datetime() – Examples

pandas.to_datetime() function in the Pandas library in Python used to convert arguments to DateTime. It’s quite handy for converting strings, timestamps, or mixed-type data into datetime objects. In this article, I will explain the pandas.to_datetime() function, its syntax, parameters, and usage of how to to_datetime() is a versatile function used extensively in data analysis and manipulation tasks, especially when dealing with time-series data.


Key Points –

  • Pandas.to_datetime() converts input into datetime objects.
  • The function can infer datetime format or be explicitly provided with format specifications.
  • It supports handling of missing or erroneous data through optional parameters like errors and infer_datetime_format.
  • Pandas.to_datetime() is a versatile tool for data preprocessing, especially in time-series analysis and data cleaning tasks.

Syntax of Pandas.to_datetime()

Following is the syntax of the Pandas.to_datetime() method.

# Pandas.to_datetime() syntax
Pandas.to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False, 
     utc=None, format=None, exact=True, unit=None, 
     infer_datetime_format=False, origin='unix', cache=True)

Parameters of the Pandas.to_datetime()

Following are the parameters of the Pandas.to_datetime() function.

  • arg – An integer, string, float, list, or DataFrame/dict_like object to convert into a Datetime object.
  • errors – Take values raise, ignore or coerce. if ‘raise’ is used, raise a KeyError when a dict-like mapper, index, or column contains labels that are not present in the Index being transformed. Default set to ignore.
  • dayfirst – default set False, Boolean value places day first if True.
  • yearfirst – Boolean value places year first if True, the default set False.
  • utc – Boolean value, Returns the time in UTC DatetimeIndex if True.
  • format – String input to tell the position of the day, month, and year. default set None.
  • exact – Boolean value, If True, requires an exact format match. – If False, allow the format to match anywhere in the target string.
  • infer_datetime_formatbool – If True and no format is given, attempt to infer the format of the datetime strings based on the first non-NaN element. the default set False.

Now, let’s create a DataFrame with a few rows and columns, execute the above examples and validate results. Our DataFrame contains column names Courses, Fee, Duration, Discount and Inserted.

# Pandas.to_datetime() Syntax & Examples
import pandas as pd
from datetime import datetime, timedelta
from Pandas import DataFrame
df = DataFrame.from_dict(
     'Fee' :[20000,25000,30000],
     'Inserted': ["11/22/2021, 10:39:24","11/22/2021, 10:39:24","11/22/2021, 10:39:24"]},

Yields below output. Note that Inserted column on the DataFrame has datetime in the format of "%m/%d/%Y, %H:%M:%S"

# Output:
  Courses    Fee Duration Discount              Inserted
A   Spark  20000   30days     1000  11/22/2021, 10:39:24
B  Hadoop  25000   40days     2500  11/22/2021, 10:39:24
C  Pandas  30000   35days     1500  11/22/2021, 10:39:24

Convert a Pandas String to DateTime

Converting a Pandas string to DateTime is a common operation when dealing with time-series data. You can use the pd.to_datetime() function

import pandas as pd

# Example string
date_string = '2024-05-07 10:30:00'

# Convert string to datetime
date_time = pd.to_datetime(date_string)

# Output:
# 2024-05-07 10:30:00

In the above example, the date_string variable contains a string representing a date and time. The pd.to_datetime() function converts this string into a Pandas datetime object date_time. You can now use date_time for various datetime operations and analyses in Pandas.