You can find out how to perform groupby and apply sort within groups of Pandas DataFrame by using DataFrame.Sort_values()
and DataFrame.groupby()
and apply()
with lambda
functions. In this article, I will explain how to do groupby and apply sort within groups of Pandas DataFrame and also how to get the count of each group and sort by count column.
1. Quick Examples of Sort within Groups of Pandas DataFrame
If you are in hurry below are some quick examples of doing groupby and performing sort within groups of pandas DataFrame.
# Below are some quick examples.
# Example 1 - Using groupby to sort_values of Pandas DataFrame.
df2=df.sort_values(['Courses','Fee'],ascending=False).groupby('Courses').head(3)
# Example 2
df2 = df.groupby(['Courses','Duration']).agg({'Fee':sum})
# First three elements using groupby with lambda and DataFrame.apply() method.
df2 = df.apply(lambda x: x.sort_values(ascending=False).head(3))
# Example 3 - Using groupby with DataFrame.nlargest().
df2=df.groupby(["Courses"])["Fee"].nlargest(3)
# Example 4 - Sort values in descending order with groupby.
df2=df.groupby(['Courses'])['Fee'].sum().sort_values(ascending=False).head(2)
# Example 5 - Sort values of groupby using DataFrame.drop() method.
df2=df.groupby(['Fee']).apply(lambda x: x.sort_values(['Courses'], ascending=False).head(3)
.drop('Fee', axis=1))
Let’s create a pandas DataFrame with a few rows and columns, execute these examples and validate results. Our DataFrame contains column names Courses
, Fee
and Duration
.
# Create a Pandas DataFrame.
import pandas as pd
import numpy as np
technologies= {
'Courses':["Spark","PySpark","Spark","Python","PySpark"],
'Fee' :[22000,25000,23000,24000,26000],
'Duration':['30days','50days','30days','60days','35days']
}
df = pd.DataFrame(technologies)
print(df)
Yields below output.
# Output:
Courses Fee Duration
0 Spark 22000 30days
1 PySpark 25000 50days
2 Spark 23000 30days
3 Python 24000 60days
4 PySpark 26000 35days
2. Sort within Groups of groupby() Result in DataFrame
By using DataFrame.sort_values()
, you can sort DataFrame in ascending or descending order, before you use this first group the DataFrame rows by using DataFrame.groupby() method.
Note that groupby preserves the order of rows within each group.
# Using groupby & sort_values to sort.
df2=df.sort_values(['Courses','Fee'],ascending=False).groupby('Courses').head(3)
print(df2)
Yields below output. head() method or similar should be used to get the result of the DataFrame. Here, head() method return 3 rows for each group.
# Output:
Courses Fee Duration
2 Spark 23000 30days
0 Spark 22000 30days
3 Python 24000 60days
4 PySpark 26000 35days
1 PySpark 25000 50days
3. Another Example of Sorting within group
First let’s group the rows and then we apply the sort for each group.
# Groupby using DataFrame.agg() Method.
df2 = df.groupby(['Courses','Duration']).agg({'Fee':sum})
print(df2)
Yields below output.
# Output:
Fee
Courses Duration
PySpark 35days 26000
50days 25000
Python 60days 24000
Spark 30days 45000
Now, We group by the first level of the index:
# Groupby the first level of index.
df2 = df.agg['Fee'].groupby('Courses', group_keys=False)
print(df2)
Then, If you want to sort each group and take the first three elements by using lambda
and pandas.DataFrame.apply() functions.
# First three elements using groupby with lambda and DataFrame.apply() method.
df2 = df.apply(lambda x: x.sort_values(ascending=False).head(3))
print(df2)
Yields below output.
# Output:
Courses Fee Duration
0 Spark NaN NaN
1 NaN 25000.0 50days
2 Spark NaN NaN
3 Python 24000.0 60days
4 NaN 26000.0 35days
4. Using Groupby with DataFrame.nlargest()
The DataFrame.nlargest()
function is used to get the first n rows ordered by columns in descending order. The columns that are not specified are returned as well, but not used for ordering.
# Using groupby with DataFrame.nlargest().
df2=df.groupby(["Courses"])["Fee"].nlargest(3)
print(df2)
Yields below output.
# Output:
Courses
PySpark 4 26000
1 25000
Python 3 24000
Spark 2 23000
0 22000
Name: Fee, dtype: int64
5. Sort Values in Descending Order with Groupby
You can sort values in descending order by using ascending=False param to sort_values() method. The head()
function is used to get the first n rows. It is useful for quickly testing if your object has the right type of data in it.
# Sort values in descending order with groupby.
df2=df.groupby(['Courses'])['Fee'].sum().sort_values(ascending=False).head(2)
print(df2)
Yields below output.
# Output:
Courses
PySpark 51000
Spark 45000
Name: Fee, dtype: int64
6. Sort Values using apply()
Now lets see how to sort groupby results using apply() method. Here we apply a lamda function with sort_values() function to sort data.
# Sort values of groupby using DataFrame.drop() method.
df2=df.groupby(['Fee']).apply(lambda x: x.sort_values(['Courses'], ascending=False).head(3)
.drop('Fee', axis=1))
print(df2)
Yields below output.
# Output:
Fee
22000 0 Spark 30days
23000 2 Spark 30days
24000 3 Python 60days
25000 1 PySpark 50days
26000 4 PySpark 35days
7. Complete Examples of Sort within Groups
# Create a Pandas DataFrame.
import pandas as pd
import numpy as np
technologies= {
'Courses':["Spark","PySpark","Spark","Python","PySpark"],
'Fee' :[22000,25000,23000,24000,26000],
'Duration':['30days','50days','30days','60days','35days']
}
df = pd.DataFrame(technologies)
print(df)
# Using groupby to sort_values of Pandas DataFrame.
df2=df.sort_values(['Courses','Fee'],ascending=False).groupby('Courses').head(3)
print(df2)
# Groupby using DataFrame.agg() Method.
df2 = df.groupby(['Courses','Duration']).agg({'Fee':sum})
print(df2)
# First three elements using groupby with lambda and DataFrame.apply() method.
df2 = df.apply(lambda x: x.sort_values(ascending=False).head(3))
print(df2)
# Using groupby with DataFrame.nlargest().
df2=df.groupby(["Courses"])["Fee"].nlargest(3)
print(df2)
# Sort values in descending order with groupby.
df2=df.groupby(['Courses'])['Fee'].sum().sort_values(ascending=False).head(2)
print(df2)
# Sort values of groupby using DataFrame.drop() method.
df2=df.groupby(['Fee']).apply(lambda x: x.sort_values(['Courses'], ascending=False).head(3)
.drop('Fee', axis=1))
print(df2)
Conclusion
In this article, You have learned how to sort values within the group after groupby using Pandas DataFrame.groupby()
, DataFrame.Sort_values()
Methods and lambda
functions with multiple examples.
Related Articles
- Pandas Find Unique Values From Columns
- Convert Row to Column Header in Pandas DataFrame
- Retrieve Number of Rows From Pandas DataFrame
- Replace Column value in Pandas DataFrame
- Rename Specific Columns in Pandas
- How to GroupBy Index in Pandas?
- Pandas groupby() and count() with Examples
- Pandas groupby() Explained With Examples
- Pandas groupby() and sum() With Examples