• Post author:
  • Post category:Pandas
  • Post last modified:October 9, 2024
  • Reading time:17 mins read
You are currently viewing Pandas Change String to Date in DataFrame

To convert a pandas DataFrame column from string to date type (datetime64[ns]) format, you can use the pandas.to_datetime() function or the DataFrame.astype() method. In this article, I will explain change the string column to date format, change multiple string columns to date format, and finally change all string columns that have date string to date time column.

Advertisements

Note that if dates are not in date format, you cannot execute any time-series-based operations on the dates hence, conversion is required.

Key Points –

  • The primary function for converting string data to datetime objects in Pandas.
  • pd.to_datetime() can often infer the correct date format from a variety of string representations.
  • You can specify a date format using the format parameter in pd.to_datetime() for consistent conversion.
  • pd.to_datetime() can handle columns with mixed date formats, but may require careful handling to avoid errors.
  • You can apply pd.to_datetime() to a single column or multiple columns in a DataFrame for date conversion.

Quick Examples of Change String to Date in Pandas DataFrame

Following are quick examples of changing the DataFrame columns type from string to date format (date type datetime64[ns]).


# Quick examples of change string to date

# Example 1: Use pandas.to_datetime() 
# To convert string to datetime format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"])

# Example 2: Convert and store in another column
df["NewColumn"] = pd.to_datetime(df["InsertedDate"])

# Example 3: Using DataFrame.astype() function
df["InsertedDate"] = df["InsertedDate"].astype('datetime64[ns]')

# Example 4: Convert the data type of column 'Date' from string (YYYY/MM/DD) 
# To datetime64
df["InsertedDates"] =  pd.to_datetime(df["InsertedDates"], format="%Y/%m/%d")

# Example 5: Use pandas.to_datetime() to convert string 
# To "yyyymmdd" format
df["InsertedDates"] = pd.to_datetime(df["InsertedDates"], format='%y%m%d')

To run some examples of changing string to ate in Pandas DataFrame, let’s create a Pandas DataFrame.


# Create DataFrame
import pandas as pd
technologies   = ({
    'Courses':["Spark","PySpark","Hadoop","Python","Pandas"],
    'Fee' :[22000,25000,23000,24000,26000],
    "InsertedDate":["2020/11/14","17/11/2020","17-11-2020","2021-11-17","11/14/2021"]
          })
df = pd.DataFrame(technologies)
print("Create DataFrame:\n", df)
print("----------------------------------")
print("Type of the columns:\n", df.dtypes)

Yields below output.

pandas convert string date

Use pandas.to_datetime() to Change String to Date

pandas.to_datetime() method is used to change String/Object time to date type (datetime64[ns]). This method is smart enough to change different formats of the String date column to date.

Related: You can also convert Date (datetime) to String Format.


# Use pandas.to_datetime() to convert string to datetime format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"])
print("After converting a string type to datetime"\n:, df)
print("----------------------------------")
print("Type of the columns:\n", df.dtypes)

Note that the dtype of InsertedDate column changed to datetime64[ns] from object type.

pandas convert string date

In order to create a new column in pandas instead of updating the existing one.


# Convert and store in different column
df["NewColumn"] = pd.to_datetime(df["InsertedDate"])

You can also specify the input format param to to_datetime()


# Specify input format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"], format="%Y/%m/%d")

Using DataFrame.astype() to Change String to Date

DataFrame.astype() method is also used to change string to date dtype (datetime64[ns]). Note that astype() is used to cast any datatype (dtype) in pandas.


# Using DataFrame.astype() function
df["InsertedDate"] = df["InsertedDate"].astype('datetime64[ns]')
print("After converting a string type to datetime"\n:, df)
print("----------------------------------")
print("Type of the columns:\n", df.dtypes)

Use pandas.to_datetime() to change String to “yyyymmdd” Format

If You have a date in "yymmdd" format in the DataFrame column, and to change it from a string to a date(‘yyyy-mm-dd’) format.


import pandas as pd
technologies = [["211114",22000],["211117",25000],["211115",26000],
            ["211117",30000],['211114',35000]]
df = pd.DataFrame(technologies,columns=["InsertedDate",'Fee'])
print("Create DataFrame:\n", df)
print("---------------------------")
print("Type of the columns:\n", df.dtypes)

Output.


# Output:
# Create DataFrame:
  InsertedDate    Fee
0        211114  22000
1        211117  25000
2        211115  26000
3        211117  30000
4        211114  35000
--------------------------------
Type of the columns:
InsertedDate    object
Fee               int64
dtype: object

You can see that the Datatype of the "InsertedDate" column in the DataFrame is "object", that means, it is a string. Now, convert the datatype into datetime(‘yyyy-mm-dd’) format by using df["InsertedDate"] = pd.to_datetime(df["InsertedDate"],format='%y%m%d') function.


# Use pandas.to_datetime() to convert string to "yyyymmdd" format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"], format='%y%m%d')
print("After converting a string type to datetime"\n:, df)
print("----------------------------------")
print("Type of the columns:\n", df.dtypes)

Output.


# Output:
# After converting a string type to datetime:
  InsertedDate    Fee
0    2021-11-14  22000
1    2021-11-17  25000
2    2021-11-15  26000
3    2021-11-17  30000
4    2021-11-14  35000
# Type of the columns:
InsertedDate    datetime64[ns]
Fee                       int64
dtype: object

Change Multiple Columns from string Using pandas.to_datetime()

Alternatively, you can convert multiple columns from string type to date format, which means "YYYYMMDD" format, by using the "pandas.to_datetime()" function.


# Create DataFrame
import pandas as pd
technologies = [["20211114","Spark","20211115"],["20211117","PySpark","20211118"],["20211115","Hadoop","20211115"],
            ["20211117","Python","20211119"],['20211114',"Pandas","20211117"]]
df = pd.DataFrame(technologies,columns=["InsertedDate",'Courses',"UpdatedDate"])
print("Create DataFrame:\n", df)
print("----------------------------------")
print("Type of the columns:\n", df.dtypes)

Convert multiple string columns to Date.


#  Using pandas.to_datetime()
# To convert multiple columns from string
df["InsertedDate"] = pd.to_datetime(
                          df["InsertedDate"],
                          format='%Y%m%d'
)
df["UpdatedDate"] = pd.to_datetime(
                          df["UpdatedDate"],
                          format='%Y%m%d'
)
print("After converting a string type to datetime:\n", df)
print("----------------------------------")
print("Type of the columns:\n", df.dtypes)

Output.


# Output:
# After converting a string type to datetime
  InsertedDate  Courses UpdatedDate
0    2021-11-14    Spark   2021-11-15
1    2021-11-17  PySpark   2021-11-18
2    2021-11-15   Hadoop   2021-11-15
3    2021-11-17   Python   2021-11-19
4    2021-11-14   Pandas   2021-11-17
-----------------------------------------
Type of the columns:
InsertedDate    datetime64[ns]
Courses                  object
UpdatedDate     datetime64[ns]
dtype: object

Complete Example for Change String to Date


import pandas as pd
technologies   = ({
    'Courses':["Spark","PySpark","Hadoop","Python","Pandas"],
    'Fee' :[22000,25000,23000,24000,26000],
    'Duration':['30days','50days','55days','40days','60days'],
    'Discount':[1000,2300,1000,1200,2500],
    "InsertedDate":["2020/11/14","2020/11/17","2021/11/15","2021/11/17","2021/11/14"]
          })
df = pd.DataFrame(technologies)

# Use pandas.to_datetime() 
# To convert string to datetime format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"])
print (df.dtypes)

# Check the format of 'InsertedDate' column
df.info()

# Using DataFrame.astype() function
df["InsertedDate"] = df["InsertedDate"].astype('datetime64[ns]')
print (df.dtypes)

# Convert the data type of column 'Date' from string (YYYY/MM/DD) 
# To datetime64
df["InsertedDate"] =  pd.to_datetime(df["InsertedDate"], format="%Y/%m/%d")
print(df.dtypes)

# Use pandas.to_datetime() 
# To convert string to "yyyymmdd" format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"], format='%y%m%d')
print(df)
print(df.dtypes)

# Using pandas.to_datetime() 
# To convert multiple columns from string
df["InsertedDate"] = pd.to_datetime(
                          df["InsertedDate"],
                          format='%Y%m%d')
df["UpdatedDate"] = pd.to_datetime(
                          df["UpdatedDate"],
                          format='%Y%m%d')
print(df)
print(df.dtypes)

FAQs on Change String to Date Format

What if the date format is different in my DataFrame?

If your date format differs, you can specify the format using the format parameter. For example, if your date is in the format ‘dd-mm-yyyy’. For example, df['date_format'] = pd.to_datetime(df['string_column'], format='%d-%m-%Y')

How can I convert multiple string columns to date columns simultaneously?

You can convert multiple string columns to date columns simultaneously by applying pd.to_datetime() to each column. For example, df[['date_format1', 'date_format2']] = df[['string_column1', 'string_column2']].apply(pd.to_datetime)

How can I convert a date column back to a string if needed?

you can convert a date column back to a string using the dt.strftime() method. For example, df['string_column'] = df['date_format'].dt.strftime('%Y-%m-%d')

How can I extract specific components (day, month, year) from the datetime column?

Once you have a datetime column, you can extract specific components using the dt accessor. For example, df['day'] = df['date'].dt.day
df['month'] = df['date'].dt.month
df['year'] = df['date'].dt.year

Conclusion

In conclusion, this article has changed Pandas DataFrame column type from string to Date format by using pandas.to_datetime() & DataFrame.astype() functions.

Happy Learning !!

References

Leave a Reply