Pandas change or convert DataFrame Column Type From String to Date type datetime64[ns]
Format – You can change the pandas DataFrame column type from string to date format by using pandas.to_datetime()
and DataFrame.astype()
method.
In this article, I will explain how to change the string column to date format, change multiple string columns to date format, and finally change all string columns that have date string to date time column.
Note that if dates are not in date format, you cannot execute any time-series based operations on the dates hence, conversion is required.
1. Quick Examples of Change String to Date in Pandas DataFrame
If you are in a hurry, below are some quick examples of how to change pandas DataFrame columns type from string to date format (date type datetime64[ns]
.
# Below are quick example
# Use pandas.to_datetime() to convert string to datetime format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"])
# Convert and store in another column
df["NewColumn"] = pd.to_datetime(df["InsertedDate"])
# Using DataFrame.astype() function
df["InsertedDate"] = df["InsertedDate"].astype('datetime64[ns]')
# Convert the data type of column 'Date' from string (YYYY/MM/DD) to datetime64
df["InsertedDates"] = pd.to_datetime(df["InsertedDates"], format="%Y/%m/%d")
# Use pandas.to_datetime() to convert string to "yyyymmdd" format
df["InsertedDates"] = pd.to_datetime(df["InsertedDates"], format='%y%m%d')
Now, let’s create a DataFrame with a few rows and columns, execute these examples and validate results. Our DataFrame contains column names Courses
, Fee
, Duration
, Discount
, and InsertedDate
.
import pandas as pd
technologies = ({
'Courses':["Spark","PySpark","Hadoop","Python","Pandas"],
'Fee' :[22000,25000,23000,24000,26000],
"InsertedDate":["2020/11/14","17/11/2020","17-11-2020","2021-11-17","11/14/2021"]
})
df = pd.DataFrame(technologies)
print(df)
print(df.dtypes)
Yields below output.
Courses Fee InsertedDate
0 Spark 22000 2020/11/14
1 PySpark 25000 17/11/2020
2 Hadoop 23000 17-11-2020
3 Python 24000 2021-11-17
4 Pandas 26000 11/14/2021
Courses object
Fee int64
InsertedDate object
dtype: object
2. Use pandas.to_datetime() to Change String to Date
pandas.to_datetime()
method is used to change String/Object time to date type (datetime64[ns]). This method is smart enough to change different formats of the String date column to date.
# Use pandas.to_datetime() to convert string to datetime format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"])
print(df)
print (df.dtypes)
Yields below output. Note that the dtype
of InsertedDate
column changed to datetime64[ns]
from object
type.
Courses Fee InsertedDate
0 Spark 22000 2020-11-14
1 PySpark 25000 2020-11-17
2 Hadoop 23000 2020-11-17
3 Python 24000 2021-11-17
4 Pandas 26000 2021-11-14
Courses object
Fee int64
InsertedDate datetime64[ns]
dtype: object
In order to create a new column in pandas instead of updating the existing one.
# Convert and store in different column
df["NewColumn"] = pd.to_datetime(df["InsertedDate"])
You can also specify the input format param to to_datetime()
# Specify input format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"], format="%Y/%m/%d")
3. Using DataFrame.astype() to Change String to Date
DataFrame.astype()
method is also used to change string to date dtype (datetime64[ns]
). Note that astype() is used to cast any datatype (dtype) in pandas.
# Using DataFrame.astype() function
df["InsertedDate"] = df["InsertedDate"].astype('datetime64[ns]')
print (df.dtypes)
Yields same output as above.
5. Use pandas.to_datetime() to change String to “yyyymmdd” Format
If You have a date in "yymmdd"
format in the DataFrame column, and to change it from a string to a date(‘yyyy-mm-dd’)
format.
import pandas as pd
technologies = [["211114",22000],["211117",25000],["211115",26000],
["211117",30000],['211114',35000]]
df = pd.DataFrame(technologies,columns=["InsertedDate",'Fee'])
print(df)
print(df.dtypes)
Yields below output.
InsertedDate Fee
0 211114 22000
1 211117 25000
2 211115 26000
3 211117 30000
4 211114 35000
InsertedDate object
Fee int64
dtype: object
You see that the Datatype of the "InsertedDate"
column in the DataFrame is "object"
, that means, it is a string. Now, convert the datatype into datetime(‘yyyy-mm-dd’)
format by using df["InsertedDate"] = pd.to_datetime(df["InsertedDate"],format='%y%m%d')
function.
# Use pandas.to_datetime() to convert string to "yyyymmdd" format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"], format='%y%m%d')
print(df)
print(df.dtypes)
Yields below output.
InsertedDate Fee
0 2021-11-14 22000
1 2021-11-17 25000
2 2021-11-15 26000
3 2021-11-17 30000
4 2021-11-14 35000
InsertedDate datetime64[ns]
Fee int64
dtype: object
6. Change Multiple Columns from string Using pandas.to_datetime()
You can convert multiple columns from "string"
to "date"
format, which means "YYYYMMDD"
format, by using the "pandas.to_datetime()"
function.
import pandas as pd
technologies = [["20211114","Spark","20211115"],["20211117","PySpark","20211118"],["20211115","Hadoop","20211115"],
["20211117","Python","20211119"],['20211114',"Pandas","20211117"]]
df = pd.DataFrame(technologies,columns=["InsertedDate",'Courses',"UpdatedDate"])
print(df)
print(df.dtypes)
Conver multiple string columns to Date.
# Using pandas.to_datetime() to convert multiple columns from string
df["InsertedDate"] = pd.to_datetime(
df["InsertedDate"],
format='%Y%m%d'
)
df["UpdatedDate"] = pd.to_datetime(
df["UpdatedDate"],
format='%Y%m%d'
)
print(df)
print(df.dtypes)
Yields below output.
InsertedDate Courses UpdatedDate
0 2021-11-14 Spark 2021-11-15
1 2021-11-17 PySpark 2021-11-18
2 2021-11-15 Hadoop 2021-11-15
3 2021-11-17 Python 2021-11-19
4 2021-11-14 Pandas 2021-11-17
InsertedDate datetime64[ns]
Courses object
UpdatedDate datetime64[ns]
dtype: object
7. Complete Example For Change String to Date in DataFrame
import pandas as pd
technologies = ({
'Courses':["Spark","PySpark","Hadoop","Python","Pandas"],
'Fee' :[22000,25000,23000,24000,26000],
'Duration':['30days','50days','55days','40days','60days'],
'Discount':[1000,2300,1000,1200,2500],
"InsertedDate":["2020/11/14","2020/11/17","2021/11/15","2021/11/17","2021/11/14"]
})
df = pd.DataFrame(technologies)
# Use pandas.to_datetime() to convert string to datetime format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"])
print (df.dtypes)
# Check the format of 'InsertedDate' column
df.info()
# Using DataFrame.astype() function
df["InsertedDate"] = df["InsertedDate"].astype('datetime64[ns]')
print (df.dtypes)
# Convert the data type of column 'Date' from string (YYYY/MM/DD) to datetime64
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"], format="%Y/%m/%d")
print(df.dtypes)
# Use pandas.to_datetime() to convert string to "yyyymmdd" format
df["InsertedDate"] = pd.to_datetime(df["InsertedDate"], format='%y%m%d')
print(df)
print(df.dtypes)
# Using pandas.to_datetime() to convert multiple columns from string
df["InsertedDate"] = pd.to_datetime(
df["InsertedDate"],
format='%Y%m%d')
df["UpdatedDate"] = pd.to_datetime(
df["UpdatedDate"],
format='%Y%m%d')
print(df)
print(df.dtypes)
Conclusion
In this article, you have learned how to change pandas DataFrame column type from string to Date format by using pandas.to_datetime()
& DataFrame.astype()
function with examples.
Happy Learning !!
Related Articles
- Select Pandas DataFrame Rows Between Two Dates
- Pandas Convert String Column To DateTime
- Pandas Convert Multiple Columns To DateTime Type
- Normalize Columns of Pandas DataFrame
- Create Conditional Column in Pandas DataFrame