2. pandas.to_datetime() Syntax & Examples
Below is the syntax of the pandas.to_datetime()
method.
# Pandas.to_datetime() syntax
pandas.to_datetime(arg, errors='raise', dayfirst=False, yearfirst=False,
utc=None, format=None, exact=True, unit=None,
infer_datetime_format=False, origin='unix', cache=True)
arg
– An integer, string, float, list, or DataFrame/dict_like object to convert into a Datetime object.errors
– Take valuesraise
,ignore
orcoerce
. if ‘raise’ used, raise a KeyError when a dict-like mapper, index, or columns contains labels that are not present in the Index being transformed. Default set toignore
.dayfirst
– default set False, Boolean value places day first if True.yearfirst
– Boolean value places year first if True, the default set False.utc
– Boolean value, Returns the time in UTC DatetimeIndex if True.format
– String input to tell the position of the day, month, and year. default set None.exact
– Boolean value, If True, require an exact format match. – If False, allow the format to match anywhere in the target string.infer_datetime_formatbool
– If True and no format is given, attempt to infer the format of the datetime strings based on the first non-NaN element. the default set False.
Now, let’s create a DataFrame with a few rows and columns, execute above examples and validate results. Our DataFrame contains column names Courses
, Fee
, Duration
, Discount
and Inserted
.
# Pandas.to_datetime() Syntax & Examples
import pandas as pd
from datetime import datetime, timedelta
from pandas import DataFrame
df = DataFrame.from_dict(
{'Courses':["Spark","Hadoop","pandas"],
'Fee' :[20000,25000,30000],
'Duration':['30days','40days','35days'],
'Discount':[1000,2500,1500],
'Inserted': ["11/22/2021, 10:39:24","11/22/2021, 10:39:24","11/22/2021, 10:39:24"]},
orient='index',
columns=['A','B','C']).T
print(df)
Yields below output. Note that Inserted
column on the DataFrame has datetime in the format of "%m/%d/%Y, %H:%M:%S"
# Output:
Courses Fee Duration Discount Inserted
A Spark 20000 30days 1000 11/22/2021, 10:39:24
B Hadoop 25000 40days 2500 11/22/2021, 10:39:24
C pandas 30000 35days 1500 11/22/2021, 10:39:24