In this section, I will explain a few RDD Transformations with word count example in Spark with scala, before we start first, let’s create an RDD by reading a text file. The text file used here is available on the GitHub.
// Imports
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
// Create SparkSession
val spark = SparkSession.builder()
.master("local[3]")
.appName("SparkByExamples.com")
.getOrCreate()
// Prepare Data
data = ["Project Gutenberg’s",
"Alice’s Adventures in Wonderland",
"Project Gutenberg’s",
"Adventures in Wonderland",
"Project Gutenberg’s"]
// Create RDD
rdd = spark.sparkContext.parallelize(data)

1. flatMap() Transformation
flatMap()
transformation flattens the RDD after applying the function and returns a new RDD. On the below example, first, it splits each record by space in an RDD and finally flattens it. Resulting RDD consists of a single word on each record.
val rdd2 = rdd.flatMap(f=>f.split(" "))
2. map() Transformation
map()
transformation is used the apply any complex operations like adding a column, updating a column e.t.c, the output of map transformations would always have the same number of records as the input.
In our word count example, we are adding a new column with a value of 1 for each word, the result of the RDD is PairRDDFunctions which contains key-value pairs, word of type String as Key, and 1 of type Int as value. For your understanding, I’ve defined the rdd3 variable with type.
val rdd3:RDD[(String,Int)]= rdd2.map(m=>(m,1))
3. filter() Transformation
filter()
transformation is used to filter the records in an RDD. In our example, we are filtering all words that start with “a”.
val rdd4 = rdd3.filter(a=> a._1.startsWith("a"))
4. reduceByKey() Transformation
reduceByKey()
merges the values for each key with the function specified. In our example, it reduces the word string by applying the sum function to the value. The result of our RDD contains unique words and their count.
val rdd5 = rdd3.reduceByKey(_ + _)
5. sortByKey() Transformation
sortByKey()
transformation is used to sort RDD elements on key. In our example, first, we convert RDD[(String,Int]) to RDD[(Int,String]) using map transformation and apply sortByKey which ideally does sort on an integer value. And finally, foreach with println statement prints all words in RDD and their count as key-value pair to console.
val rdd6 = rdd5.map(a=>(a._2,a._1)).sortByKey()
//Print rdd6 result to console
rdd6.foreach(println)
6. Spark Word Count Example
Following is a complete example of a word count example in Scala by using several RDD transformations.
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.SparkSession
object WordCountExample {
def main(args:Array[String]): Unit = {
val spark:SparkSession = SparkSession.builder()
.master("local[3]")
.appName("SparkByExamples.com")
.getOrCreate()
val sc = spark.sparkContext
val rdd:RDD[String] = sc.textFile("src/main/resources/test.txt")
println("initial partition count:"+rdd.getNumPartitions)
val reparRdd = rdd.repartition(4)
println("re-partition count:"+reparRdd.getNumPartitions)
//rdd.coalesce(3)
rdd.collect().foreach(println)
// rdd flatMap transformation
val rdd2 = rdd.flatMap(f=>f.split(" "))
rdd2.foreach(f=>println(f))
//Create a Tuple by adding 1 to each word
val rdd3:RDD[(String,Int)]= rdd2.map(m=>(m,1))
rdd3.foreach(println)
//Filter transformation
val rdd4 = rdd3.filter(a=> a._1.startsWith("a"))
rdd4.foreach(println)
//ReduceBy transformation
val rdd5 = rdd3.reduceByKey(_ + _)
rdd5.foreach(println)
//Swap word,count and sortByKey transformation
val rdd6 = rdd5.map(a=>(a._2,a._1)).sortByKey()
println("Final Result")
//Action - foreach
rdd6.foreach(println)
//Action - count
println("Count : "+rdd6.count())
//Action - first
val firstRec = rdd6.first()
println("First Record : "+firstRec._1 + ","+ firstRec._2)
//Action - max
val datMax = rdd6.max()
println("Max Record : "+datMax._1 + ","+ datMax._2)
//Action - reduce
val totalWordCount = rdd6.reduce((a,b) => (a._1+b._1,a._2))
println("dataReduce Record : "+totalWordCount._1)
//Action - take
val data3 = rdd6.take(3)
data3.foreach(f=>{
println("data3 Key:"+ f._1 +", Value:"+f._2)
})
//Action - collect
val data = rdd6.collect()
data.foreach(f=>{
println("Key:"+ f._1 +", Value:"+f._2)
})
//Action - saveAsTextFile
rdd5.saveAsTextFile("c:/tmp/wordCount")
}
}
Conclusion
In this Spark RDD Transformations tutorial, you have learned different transformation functions and their usage with scala examples and GitHub project for quick reference.
Happy Learning !!