Python NumPy logspace()
function is used to create an array of evenly spaced values between two numbers on the logarithmic scale. It returns a NumPy array of uniformly spaced values on the log scale between the start and stop. In this article, I will explain NumPy logspace()
function syntax and using its parameters how we can return the numbers spaced evenly on a log scale with examples.
1. Quick Examples of Python NumPy logspace() Function
If you are in a hurry, below are some quick examples of how to use logspace()
function in Python NumPy.
# Below are the quick examples
# Example 1: Equally spaced values on log scale between 2 and 3
arr = np.logspace(2, 3)
# Example 2: Six equally spaced values on log scale between 2 and 3
arr = np.logspace(2, 3, num=6)
# Example 3: Exclude the stop endpoint
arr = np.logspace(2, 3, num=6, endpoint=False)
# Example 4: Use a different log base for the log scale
arr = np.logspace(2, 3, num=7, base=2)
# Example 5: Graphical representation of numpy.logspace() using matplotlib module
arr = 40
a1 = np.logspace(0.6, 4, arr, endpoint=True)
a2 = np.logspace(0.6, 4, arr, endpoint=False)
b = np.zeros(arr)
plt.plot(a1, b, 'o')
plt.ylim([-0.8, 4])
plt.show()
# Example 6: Graphical representation of numpy.logspace()
arr = np.logspace(2, 3, num=6)
arr1 = np.zeros(6)
plt.plot(arr, arr1, 'o')
2. Syntax of NumPy logspace()
Following is the syntax of the logspace()
function.
# Syntax of Use logspace()
numpy.logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None, axis=0)
2.1 Parameters of logspace()
Following are the parameters of logspace()
.
start
– The base ** start is the starting value of the sequence. Here base is power of start.stop
– The base ** stop is the final value of the sequence unless, the endpoint is False.num
– This represents the number of samples to generate. Default is 50.endpoint
– It is a boolean value, and if it is True, stop is the last sample. Otherwise, it is not included. Default is True.base
– It is a Base of log scale. By default, equals 10.0dtype
– The data type of the output array.axis
– The axis in the result to store the samples.
2.2 Return Value of logspace()
It returns ndarray – number samples, equally spaced on a log scale.
3. Usage of NumPy logspace()
logspace(
) function is available in NumPy module package and is used to create an array where the elements are allocated evenly spaced on the log scale. In linear space, the sequence starts at base ** start
and ends with base ** stop
. These values are equally spaced on the log scale.
The below example creates an array of equally spaced numbers on the log scale between 2
and 3
. It returns 50
values in the returned array. In linear space, the sequence starts at base ** start and ends with base ** stop.
import numpy as np
# Equally spaced values on log scale between 2 and 3
arr = np.logspace(2, 3)
print(arr)
Yields below output. By default it returns 50 values.
# Output:
[ 100. 104.81131342 109.8541142 115.13953993 120.67926406
126.48552169 132.57113656 138.94954944 145.63484775 152.64179672
159.98587196 167.68329368 175.75106249 184.20699693 193.06977289
202.35896477 212.09508879 222.29964825 232.99518105 244.20530945
255.95479227 268.26957953 281.1768698 294.70517026 308.88435965
323.74575428 339.32217719 355.64803062 372.75937203 390.69399371
409.49150624 429.19342601 449.8432669 471.48663635 494.17133613
517.94746792 542.86754393 568.9866029 596.36233166 625.05519253
655.12855686 686.648845 719.685673 754.31200634 790.60432109
828.64277285 868.51137375 910.29817799 954.09547635 1000. ]
Let’s now specify the number of equally spaced values you want. For example, let’s generate 6 equal values on the log scale between 2
and 3
.
# Six equally spaced values on log scale between 2 and 3
arr = np.logspace(2, 3, num=6)
print(arr)
# Output:
#[ 100. 158.48931925 251.18864315 398.10717055 630.95734448
# 1000. ]
4. Get the Logscale of Array with out Endpoint
To get six values between 100 (base to the power 2, the start value) and 1000 (base to the power 3, the stop value). Use the False
to the endpoint
parameter, it won’t return the stop endpoint instead it will return before the start point.
# Exclude the stop endpoint
arr = np.logspace(2, 3, num=6, endpoint=False)
print(arr)
# Output:
# [100. 146.77992676 215.443469 316.22776602 464.15888336
# 681.29206906]
5. Get Log Scale by Using a Different Log Base
By default logspace() takes 10.0
as the base for the log scale. We can customize the base parameter and get the array of evenly spaced values. For example, let’s generate 7 equally spaced values on the log scale between 2 and 3 but use 2 as the base for the log scale this time.
# Use a different log base for the log scale
arr = np.logspace(2, 3, num=7, base=2)
print(arr)
# Output:
# [4. 4.48984819 5.0396842 5.65685425 6.34960421 7.12718975
# 8. ]
6. Graphical Representation of numpy.logspace()
To get the graphical representation of numpy.logspace()
use matplot
library module. This module visualizes the even spaced values.
import numpy as np
import matplotlib.pyplot as plt
# Graphical representation of numpy.logspace() using matplotlib module
arr = 40
a1 = np.logspace(0.6, 4, arr, endpoint=True)
a2 = np.logspace(0.6, 4, arr, endpoint=False)
b = np.zeros(arr)
plt.plot(a1, b, 'o')
plt.ylim([-0.8, 4])
plt.show()
Yields below output.
You can convert these values with a log conversion and plot. For example, let’s plot the values returned from the np.logspace()
function.
import numpy as np
import matplotlib.pyplot as plt
# Graphical representation of numpy.logspace()
arr = np.logspace(2, 3, num=6)
arr1 = np.zeros(6)
plt.plot(arr, arr1, 'o')
Yields below output.
6. Conclusion
In this article, I have explained how to use the NumPy logspace() function and how to return numbers spaced evenly on a log scale with examples.
Happy Learning!!
Related Articles
- How to Use NumPy log() in Python?
- How to use Python NumPy arange() Function
- How to Use NumPy random.normal() In Python?
- Hive Built-in String Functions with Examples
- Spark – Stop INFO & DEBUG message logging to console?
- How To Use NumPy dot() Function in Python
- Python NumPy Interpolate Function
- How to Check NumPy Array Equal?
- How to Transpose Matrix in NumPy