• Post author:
  • Post category:PySpark
  • Post last modified:March 27, 2024
  • Reading time:11 mins read
You are currently viewing PySpark withColumnRenamed to Rename Column on DataFrame

Use PySpark withColumnRenamed() to rename a DataFrame column, we often need to rename one column or multiple (or all) columns on PySpark DataFrame, you can do this in several ways. When columns are nested it becomes complicated.

Advertisements

Since DataFrame’s are an immutable collection, you can’t rename or update a column instead when using withColumnRenamed() it creates a new DataFrame with updated column names, In this PySpark article, I will cover different ways to rename columns with several use cases like rename nested column, all columns, selected multiple columns with Python/PySpark examples.

Refer to this page, If you are looking for a Spark with Scala example and rename pandas column with examples

  1. PySpark withColumnRenamed – To rename DataFrame column name
  2. PySpark withColumnRenamed – To rename multiple columns
  3. Using StructType – To rename nested column on PySpark DataFrame
  4. Using Select – To rename nested columns
  5. Using withColumn – To rename nested columns
  6. Using col() function – To Dynamically rename all or multiple columns
  7. Using toDF() – To rename all or multiple columns

First, let’s create our data set to work with.


dataDF = [(('James','','Smith'),'1991-04-01','M',3000),
  (('Michael','Rose',''),'2000-05-19','M',4000),
  (('Robert','','Williams'),'1978-09-05','M',4000),
  (('Maria','Anne','Jones'),'1967-12-01','F',4000),
  (('Jen','Mary','Brown'),'1980-02-17','F',-1)
]

Our base schema with nested structure.


from pyspark.sql.types import StructType,StructField, StringType, IntegerType
schema = StructType([
        StructField('name', StructType([
             StructField('firstname', StringType(), True),
             StructField('middlename', StringType(), True),
             StructField('lastname', StringType(), True)
             ])),
         StructField('dob', StringType(), True),
         StructField('gender', StringType(), True),
         StructField('gender', IntegerType(), True)
         ])

Let’s create the DataFrame by using parallelize and provide the above schema.


from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()
df = spark.createDataFrame(data = dataDF, schema = schema)
df.printSchema()

Below is our schema structure. I am not printing data here as it is not necessary for our examples. This schema has a nested structure.

pyspark withcolumnrenamed rename column

1. PySpark withColumnRenamed – To rename DataFrame column name

PySpark has a withColumnRenamed() function on DataFrame to change a column name. This is the most straight forward approach; this function takes two parameters; the first is your existing column name and the second is the new column name you wish for.

PySpark withColumnRenamed() Syntax:


withColumnRenamed(existingName, newNam)

existingName – The existing column name you want to change

newName – New name of the column

Returns a new DataFrame with a column renamed.

Example


df.withColumnRenamed("dob","DateOfBirth").printSchema()

The above statement changes column “dob” to “DateOfBirth” on PySpark DataFrame. Note that withColumnRenamed function returns a new DataFrame and doesn’t modify the current DataFrame.

pyspark withcolumnrenamed rename column

2. PySpark withColumnRenamed – To rename multiple columns

To change multiple column names, we should chain withColumnRenamed functions as shown below. You can also store all columns to rename in a list and loop through to rename all columns, I will leave this to you to explore.


df2 = df.withColumnRenamed("dob","DateOfBirth") \
    .withColumnRenamed("salary","salary_amount")
df2.printSchema()

This creates a new DataFrame “df2” after renaming dob and salary columns.

3. Using PySpark StructType – To rename a nested column in Dataframe

Changing a column name on nested data is not straight forward and we can do this by creating a new schema with new DataFrame columns using StructType and use it using cast function as shown below.


schema2 = StructType([
    StructField("fname",StringType()),
    StructField("middlename",StringType()),
    StructField("lname",StringType())])

df.select(col("name").cast(schema2), \
     col("dob"), col("gender"),col("salary")) \
   .printSchema()  

This statement renames firstname to fname and lastname to lname within name structure.

rename multiple columns

4. Using Select – To rename nested elements.

Let’s see another way to change nested columns by transposing the structure to flat.


from pyspark.sql.functions import *
df.select(col("name.firstname").alias("fname"), \
  col("name.middlename").alias("mname"), \
  col("name.lastname").alias("lname"), \
  col("dob"),col("gender"),col("salary")) \
  .printSchema()
rename nested column

5. Using PySpark DataFrame withColumn – To rename nested columns

When you have nested columns on PySpark DatFrame and if you want to rename it, use withColumn on a data frame object to create a new column from an existing and we will need to drop the existing column. Below example creates a “fname” column from “name.firstname” and drops the “name” column


from pyspark.sql.functions import *
df4 = df.withColumn("fname",col("name.firstname")) \
      .withColumn("mname",col("name.middlename")) \
      .withColumn("lname",col("name.lastname")) \
      .drop("name")
df4.printSchema()

6. Using col() function – To Dynamically rename all or multiple columns

Another way to change all column names on Dataframe is to use col() function.


IN progress

7. Using toDF() – To change all columns in a PySpark DataFrame

When we have data in a flat structure (without nested) , use toDF() with a new schema to change all column names.


newColumns = ["newCol1","newCol2","newCol3","newCol4"]
df.toDF(*newColumns).printSchema()

Source code


import pyspark
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType,StructField, StringType, IntegerType
from pyspark.sql.functions import *

spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()

dataDF = [(('James','','Smith'),'1991-04-01','M',3000),
  (('Michael','Rose',''),'2000-05-19','M',4000),
  (('Robert','','Williams'),'1978-09-05','M',4000),
  (('Maria','Anne','Jones'),'1967-12-01','F',4000),
  (('Jen','Mary','Brown'),'1980-02-17','F',-1)
]

schema = StructType([
        StructField('name', StructType([
             StructField('firstname', StringType(), True),
             StructField('middlename', StringType(), True),
             StructField('lastname', StringType(), True)
             ])),
         StructField('dob', StringType(), True),
         StructField('gender', StringType(), True),
         StructField('salary', IntegerType(), True)
         ])

df = spark.createDataFrame(data = dataDF, schema = schema)
df.printSchema()

# Example 1
df.withColumnRenamed("dob","DateOfBirth").printSchema()
# Example 2   
df2 = df.withColumnRenamed("dob","DateOfBirth") \
    .withColumnRenamed("salary","salary_amount")
df2.printSchema()

# Example 3 
schema2 = StructType([
    StructField("fname",StringType()),
    StructField("middlename",StringType()),
    StructField("lname",StringType())])
    
df.select(col("name").cast(schema2),
  col("dob"),
  col("gender"),
  col("salary")) \
    .printSchema()    

# Example 4 
df.select(col("name.firstname").alias("fname"),
  col("name.middlename").alias("mname"),
  col("name.lastname").alias("lname"),
  col("dob"),col("gender"),col("salary")) \
  .printSchema()
  
# Example 5
df4 = df.withColumn("fname",col("name.firstname")) \
      .withColumn("mname",col("name.middlename")) \
      .withColumn("lname",col("name.lastname")) \
      .drop("name")
df4.printSchema()

#Example 7
newColumns = ["newCol1","newCol2","newCol3","newCol4"]
df.toDF(*newColumns).printSchema()

# Example 6
'''
not working
old_columns = Seq("dob","gender","salary","fname","mname","lname")
new_columns = Seq("DateOfBirth","Sex","salary","firstName","middleName","lastName")
columnsList = old_columns.zip(new_columns).map(f=>{col(f._1).as(f._2)})
df5 = df4.select(columnsList:_*)
df5.printSchema()
'''

  

The complete code can be downloaded from GitHub

Conclusion:

This article explains different ways to rename all, a single, multiple, and nested columns on PySpark DataFrame.

I hope you like this article!!

Happy Learning.

This Post Has 17 Comments

  1. Anonymous

    The most helpful site on pyspark

  2. Anonymous

    Really helped me. Thanks a lot

  3. NNK

    Thanks for liking PySpark withColumnRenamed Example

  4. Anonymous

    Veri good tutorials , keep it up

  5. NNK

    Thank you for your comments. It means a lot to me and motivates me to write more.

  6. NNK

    Thank you for your comments. It means a lot to me and motivates me to write more.

  7. GonzaloGF

    hi, I would like to tell you that you have done a great job with this website, I thank you from the bottom of my heart because I am learning a lot and in a simple way, since you explain everything very well.

  8. NNK

    Thanks Sreenu. Glad you like the articles.

  9. Avula Sreenu

    Thank you so much bro, the way you have to show simple easy to understandable tutorial

  10. NNK

    Thanks Janusz. I’ve added this statement. appreciate your comment. Hope articles are helpful.

  11. Janusz

    NNK, Example 7 is working when you use asterisk:
    newColumns = [“newCol1″,”newCol2″,”newCol3″,”newCol4”]
    new_df = df.toDF(*newColumns).printSchema()
    Please update the article 🙂

  12. Anonymous

    Thank you so much

  13. NNK

    Thank you for your wonderful words. Happy helping the Spark community.

  14. Anonymous

    Thank you so much for the entire article. You have explained it in such simple words that it is so easy to understand. Keep up the good work! 🙂

  15. Manjunath

    Hi NNK(I dont have your full name, I m sorry)
    Thanks for your postings, I appreciate them heart fully.
    Learning Pyspark on my own.

  16. Anonymous

    You are simply Awesome.

Comments are closed.