PySpark JSON Functions with Examples

PySpark JSON functions are used to query or extract the elements from JSON string of DataFrame column by path, convert it to struct, mapt type e.t.c, In this article, I will explain the most used JSON SQL functions with Python examples.

1. PySpark JSON Functions

from_json() – Converts JSON string into Struct type or Map type.

to_json() – Converts MapType or Struct type to JSON string.

json_tuple() – Extract the Data from JSON and create them as a new columns.

get_json_object() – Extracts JSON element from a JSON string based on json path specified.

schema_of_json() – Create schema string from JSON string

1.1. Create DataFrame with Column contains JSON String

In order to explain these JSON functions first, let’s create DataFrame with a column contains JSON string.


from pyspark.sql import SparkSession,Row
spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()

jsonString="""{"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR"}"""
df=spark.createDataFrame([(1, jsonString)],["id","value"])
df.show(truncate=False)

//+---+--------------------------------------------------------------------------+
//|id |value                                                                     |
//+---+--------------------------------------------------------------------------+
//|1  |{"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR"}|
//+---+--------------------------------------------------------------------------+

2. PySpark JSON Functions Examples

2.1. from_json()

PySpark from_json() function is used to convert JSON string into Struct type or Map type. The below example converts JSON string to Map key-value pair. I will leave it to you to convert to struct type. Refer, Convert JSON string to Struct type column.


#Convert JSON string column to Map type
from pyspark.sql.types import MapType,StringType
from pyspark.sql.functions import from_json
df2=df.withColumn("value",from_json(df.value,MapType(StringType(),StringType())))
df2.printSchema()
df2.show(truncate=False)

//root
// |-- id: integer (nullable = false)
// |-- value: map (nullable = true)
// |    |-- key: string
// |    |-- value: string (valueContainsNull = true)

//+---+---------------------------------------------------------------------------+
//|id |value                                                                      |
//+---+---------------------------------------------------------------------------+
//|1  |[Zipcode -> 704, ZipCodeType -> STANDARD, City -> PARC PARQUE, State -> PR]|
//+---+---------------------------------------------------------------------------+

2.2. to_json()

to_json() function is used to convert DataFrame columns MapType or Struct type to JSON string. Here, I am using df2 that created from above from_json() example.


from pyspark.sql.functions import to_json,col
df2.withColumn("value",to_json(col("value"))) \
   .show(truncate=False)

//+---+----------------------------------------------------------------------------+
//|id |value                                                                       |
//+---+----------------------------------------------------------------------------+
//|1  |{"Zipcode":"704","ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR"}|
//+---+----------------------------------------------------------------------------+

2.3. json_tuple()

Function json_tuple() is used the query or extract the elements from JSON column and create the result as a new columns.


from pyspark.sql.functions import json_tuple
df.select(col("id"),json_tuple(col("value"),"Zipcode","ZipCodeType","City")) \
    .toDF("id","Zipcode","ZipCodeType","City") \
    .show(truncate=False)

//+---+-------+-----------+-----------+
//|id |Zipcode|ZipCodeType|City       |
//+---+-------+-----------+-----------+
//|1  |704    |STANDARD   |PARC PARQUE|
//+---+-------+-----------+-----------+

2.4. get_json_object()

get_json_object() is used to extract the JSON string based on path from the JSON column.


from pyspark.sql.functions import get_json_object
df.select(col("id"),get_json_object(col("value"),"$.ZipCodeType").alias("ZipCodeType")) \
    .show(truncate=False)

//+---+-----------+
//|id |ZipCodeType|
//+---+-----------+
//|1  |STANDARD   |
//+---+-----------+

2.5. schema_of_json()

Use schema_of_json() to create schema string from JSON string column.


from pyspark.sql.functions import schema_of_json,lit
schemaStr=spark.range(1) \
    .select(schema_of_json(lit("""{"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR"}"""))) \
    .collect()[0][0]
print(schemaStr)

//struct<City:string,State:string,ZipCodeType:string,Zipcode:bigint>

3. Complete Example of PySpark JSON Functions


from pyspark.sql import SparkSession,Row
spark = SparkSession.builder.appName('SparkByExamples.com').getOrCreate()

jsonString="""{"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR"}"""
df=spark.createDataFrame([(1, jsonString)],["id","value"])
df.show(truncate=False)

#Convert JSON string column to Map type
from pyspark.sql.types import MapType,StringType
from pyspark.sql.functions import from_json
df2=df.withColumn("value",from_json(df.value,MapType(StringType(),StringType())))
df2.printSchema()
df2.show(truncate=False)

from pyspark.sql.functions import to_json,col
df2.withColumn("value",to_json(col("value"))) \
   .show(truncate=False)

from pyspark.sql.functions import json_tuple
df.select(col("id"),json_tuple(col("value"),"Zipcode","ZipCodeType","City")) \
    .toDF("id","Zipcode","ZipCodeType","City") \
    .show(truncate=False)

from pyspark.sql.functions import get_json_object
df.select(col("id"),get_json_object(col("value"),"$.ZipCodeType").alias("ZipCodeType")) \
    .show(truncate=False)

from pyspark.sql.functions import schema_of_json,lit
schemaStr=spark.range(1) \
    .select(schema_of_json(lit("""{"Zipcode":704,"ZipCodeType":"STANDARD","City":"PARC PARQUE","State":"PR"}"""))) \
    .collect()[0][0]
print(schemaStr)

References

NNK

SparkByExamples.com is a Big Data and Spark examples community page, all examples are simple and easy to understand and well tested in our development environment Read more ..

Leave a Reply