To merge two pandas DataFrames on multiple columns use pandas.merge()
method. merge()
is considered more versatile and flexible and we also have the same method in DataFrame.
In this article, I will explain how to merge two Pandas DataFrames by multiple columns when columns on the left and right DataFrames are the same and when column names are different.
1. Quick Examples of Merging DataFrames on Multiple Columns
If you are in a hurry, below are some quick examples of merging two pandas DataFrames on multiple columns.
# Below are some quick examples of merging DataFrames on multiple columns
# Example 1: Merge default pandas DataFrame without any key column
merged_df = pd.merge(df,df1)
# Example 2: Use pandas.merge() on multiple columns
df2 = pd.merge(df, df1, on=['Courses','Fee'])
# Example 3: Use pandas.merge() on multiple columns
df2 = pd.merge(df, df1, how='left', left_on=['Courses','Fee'], right_on = ['Courses','Fee'])
# Example 4: Merge Pandas DataFrames using left_on and right_on
merged_df = pd.merge(df, df1, left_on="Courses", right_on="Courses")
# Example 5: Set value of on parameter to specify the key value for merge in pandas
merged_df = pd.merge(df, df1, on="Courses")
Now, let’s create a DataFrame with a few rows and columns, execute these examples, and validate the results. The first DataFrame contains column names 'Courses'
, 'Fee'
, 'Duration'
 and the second DataFrame contains column names 'Courses'
, 'Fee'
, 'Percentage'
.
# Create Pandas DataFrame
import pandas as pd
df = pd.DataFrame({'Courses': ["Spark","PySpark","Python","pandas","Java"],
'Fee' : [20000,25000,30000,24000,40000],
'Duration':['30day','40days','60days','55days','50days']})
df1 = pd.DataFrame({'Courses': ["Java","PySpark","Python","pandas","Hyperion"],
'Fee': [20000,25000,30000,24000,40000],
'Percentage':['10%','20%','25%','20%','10%']})
print("First DataFrame:\n", df)
print("Second DataFrame:\n", df1)
Yields below output.

2. Merge Default Pandas DataFrame Without Any Key Column
You can pass two DataFrames to be merged into the pandas.merge() method. This function collects all common columns in both DataFrames and replaces each common column in both DataFrames with a single one. It merges the DataFrames df and df1 assigned to merged_df
.
By default, the merge() method applies join contains on all columns that are present on both DataFrames and uses inner join. We have the columns Courses
and Fee
common to both the DataFrames.
# Merge default pandas DataFrame without any key column
merged_df = pd.merge(df, df1)
print("After merging the DataFrames:\n", merged_df)
Yields below output.

3. Use pandas.merge() to Multiple Columns
You can also explicitly specify the column names you want to use for joining. To specify column names use on param of the merge() method. This also takes a list of names when you want to merge multiple columns.
# Use pandas.merge() on multiple columns
df2 = pd.merge(df, df1, on=['Courses','Fee'])
print("After merging the DataFrames:\n", df2)
Yields the same output as above.
4. Use pandas.merge() when Column Names Different
When you have column names on the left and right that are different and want to use these as a join column, use left_on
and right_on
parameters. This also takes a list of column names as values to merge on multiple columns. The left_on
will be set to the name of the column in the left DataFrame and right_on
will be set to the name of the column in the right DataFrame.
# Use pandas.merge() to on multiple columns
df2 = pd.merge(df, df1, how='left', left_on=['Courses','Fee'], right_on = ['Courses','Fee'])
print("After merging the DataFrames:\n", df2)
Yields below output.
# Output:
# After merging the DataFrames:
Courses Fee Duration Percentage
0 Spark 20000 30day NaN
1 PySpark 25000 40days 20%
2 Python 30000 60days 25%
3 pandas 24000 55days 20%
4 Java 40000 50days NaN
5. Merge Pandas DataFrame Based on Single Column
If you want to merge DataFrames based on a single key column, you can simply pass the column name as a string to the on
parameter. For example:
# Set value on parameter to specify the key value for merging in pandas
merged_df = pd.merge(df, df1, on="Courses")
print(merged_df)
Yields below output.
Courses Fee_x Duration Fee_y Percentage
0 PySpark 25000 40days 25000 20%
1 Python 30000 60days 30000 25%
2 pandas 24000 55days 24000 20%
3 Java 40000 50days 20000 10%
6. Complete Example For Merge DataFrames on Multiple Columns
import pandas as pd
df = pd.DataFrame({'Courses': ["Spark","PySpark","Python","pandas","Java"],
'Fee' : [20000,25000,30000,24000,40000],
'Duration':['30day','40days','60days','55days','50days']})
df1 = pd.DataFrame({'Courses': ["Java","PySpark","Python","pandas","Hyperion"],
'Fee': [20000,25000,30000,24000,40000],
'Percentage':['10%','20%','25%','20%','10%']})
print(df)
print(df1)
# Merge default pandas DataFrame without any key column
merged_df = pd.merge(df,df1)
print(merged_df)
# Use pandas.merge() to on multiple columns
df2 = pd.merge(df, df1, how='left', left_on=['Courses','Fee'], right_on = ['Courses','Fee'])
print(df2)
# Merge Pandas DataFrames using left_on and right_on
merged_df = pd.merge(df, df1, left_on="Courses", right_on="Courses")
print(merged_df)
# Set value on parameter to specify the key value for merge in pandas
merged_df = pd.merge(df, df1, on="Courses")
print(merged_df)
Frequently Asked Questions on Pandas merge multiple columns
To merge two DataFrames based on a single column, you can use the merge()
function and specify the on
parameter with the column name. For example, merged_df = pd.merge(df1, df2, on='common_column')
You can merge DataFrames based on multiple columns. Use the on
parameter with a list of column names. For example, merged_df = pd.merge(df1, df2, on=['column1', 'column2'])
If the column names differ in the two DataFrames, you can use the left_on
and right_on
parameters. For example, merged_df = pd.merge(df1, df2, left_on='column1_df1', right_on='column2_df2')
You can use the left_index
and right_index
parameters to merge on the left and right DataFrames’ indices. For example, merged_df = pd.merge(df1, df2, left_index=True, right_index=True)
You can use the concat()
function to concatenate DataFrames along columns. For example, concatenated_df = pd.concat([df1, df2], axis=1)
Conclusion
In this article, I have explained how to merge two pandas DataFrames on multiple columns using pandas.merge()
method with examples.
Happy Learning !!
Related Articles
- Pandas Difference Between map, applymap and apply Methods
- Combine Two Pandas DataFrames With Examples
- Convert Pandas DataFrame to Dictionary (Dict)
- Iterate Over Columns of Pandas DataFrame
- Pandas Get Total | Sum of Column
- Pandas Merge Multiple DataFrame
- Pandas Merge DataFrames on Index
- Pandas Concat Two DataFrames Explained
- Pandas combine two Series
- Pandas Combine Two Columns of Text in DataFrame
- Pandas Sort by Column Values DataFrame
- Pandas iterate over the columns Of DataFrame