To merge two pandas DataFrames on multiple columns use pandas.merge()
method. merge()
is considered more versatile and flexible and we also have the same method in DataFrame.
In this article, I will explain how to merge two pandas DataFrames by multiple columns when columns on left and right DataFrames are the same and when column names are different.
1. Quick Examples of Merge DataFrames on Multiple Columns
If you are in a hurry, below are some quick examples of how to merge two pandas DataFrames on multiple columns.
# Below are quick example
# Merge default pandas DataFrame without any key column
merged_df = pd.merge(df,df1)
# Use pandas.merge() on multiple columns
df2 = pd.merge(df, df1, on=['Courses','Fee'])
# Use pandas.merge() on multiple columns
df2 = pd.merge(df, df1, how='left', left_on=['Courses','Fee'], right_on = ['Courses','Fee'])
# Merge Pandas DataFrames using left_on and right_on
merged_df = pd.merge(df, df1, left_on="Courses", right_on="Courses")
# Set value of on parameter to specify the key value for merge in pandas
merged_df = pd.merge(df, df1, on="Courses")
Now, let’s create a DataFrame with a few rows and columns, execute these examples and validate results. First DataFrame contains column names Courses
, Fee
, Duration
 and second DataFrame contains column names Courses
,Fee
,Percentage
.
import pandas as pd
df = pd.DataFrame({'Courses': ["Spark","PySpark","Python","pandas","Java"],
'Fee' : [20000,25000,30000,24000,40000],
'Duration':['30day','40days','60days','55days','50days']})
df1 = pd.DataFrame({'Courses': ["Java","PySpark","Python","pandas","Hyperion"],
'Fee': [20000,25000,30000,24000,40000],
'Percentage':['10%','20%','25%','20%','10%']})
print(df)
print(df1)
Yields below output.
Courses Fee Duration
0 Spark 20000 30day
1 PySpark 25000 40days
2 Python 30000 60days
3 pandas 24000 55days
4 Java 40000 50days
Courses Fee Percentage
0 Java 20000 10%
1 PySpark 25000 20%
2 Python 30000 25%
3 pandas 24000 20%
4 Hyperion 40000 10%
2. Merge Default Pandas DataFrame Without Any Key Column
You can pass two DataFrame to be merged to the pandas.merge()
method. This collects all common columns in both DataFrames and replaces each common column in both DataFrame with a single one. It merges the DataFrames df and df1 assigns to merged_df
.
By default, the merge() method applies join contains on all columns that are present on both DataFrames and uses inner join. We have the columns Courses
and Fee
common to both the DataFrames.
# Merge default pandas DataFrame without any key column
merged_df = pd.merge(df,df1)
print(merged_df)
Yields below output.
Courses Fee Duration Percentage
0 PySpark 25000 40days 20%
1 Python 30000 60days 25%
2 pandas 24000 55days 20%
2. Use pandas.merge() to Multiple Columns
You can also explicitly specify the column names you wanted to use for joining. To use column names use on
param of the merge() method. This also takes a list of names when you wanted to merge on multiple columns.
# Use pandas.merge() on multiple columns
df2 = pd.merge(df, df1, on=['Courses','Fee'])
print(df2)
Yields same output as above.
3. Use pandas.merge() when Column Names Different
When you have column names on left and right are different and want to use these as a join column, use left_on
and right_on
parameters. This also takes a list of column names as values to merge on multiple columns. The left_on
will be set to the name of the column in the left DataFrame and right_on
will be set to the name of the column in the right DataFrame.
# Use pandas.merge() to on multiple columns
df2 = pd.merge(df, df1, how='left', left_on=['Courses','Fee'], right_on = ['Courses','Fee'])
print(df2)
Yields below output.
Courses Fee Duration Percentage
0 Spark 20000 30day NaN
1 PySpark 25000 40days 20%
2 Python 30000 60days 25%
3 pandas 24000 55days 20%
4 Java 40000 50days NaN
6. Complete Example For Merge DataFrames on Multiple Columns
import pandas as pd
df = pd.DataFrame({'Courses': ["Spark","PySpark","Python","pandas","Java"],
'Fee' : [20000,25000,30000,24000,40000],
'Duration':['30day','40days','60days','55days','50days']})
df1 = pd.DataFrame({'Courses': ["Java","PySpark","Python","pandas","Hyperion"],
'Fee': [20000,25000,30000,24000,40000],
'Percentage':['10%','20%','25%','20%','10%']})
print(df)
print(df1)
# Merge default pandas DataFrame without any key column
merged_df = pd.merge(df,df1)
print(merged_df)
# Use pandas.merge() to on multiple columns
df2 = pd.merge(df, df1, how='left', left_on=['Courses','Fee'], right_on = ['Courses','Fee'])
print(df2)
# Merge Pandas DataFrames using left_on and right_on
merged_df = pd.merge(df, df1, left_on="Courses", right_on="Courses")
print(merged_df)
# Set value of on parameter to specify the key value for merge in pandas
merged_df = pd.merge(df, df1, on="Courses")
print(merged_df)
Conclusion
In this article, I have explained how to merge two pandas DataFrames on multiple columns using pandas.merge()
method with examples.
Happy Learning !!
Related Articles
- Pandas Difference Between map, applymap and apply Methods
- Combine Two Pandas DataFrames With Examples
- Convert Pandas DataFrame to Dictionary (Dict)
- Iterate Over Columns of Pandas DataFrame
- Pandas Get Total | Sum of Column
- Pandas Merge Multiple DataFrames
- Pandas Merge Two DataFrames
- Pandas Merge DataFrames Explained Examples
- Pandas Merge DataFrames on Index