In Pandas, you can use the drop()
function to remove the top/first N rows from a DataFrame. Use iloc[]
, drop()
and tail()
functions to drop the first n rows from the pandas DataFrame. In this article, I will explain drop/delete the first n rows from Pandas DataFrame.
Related: You can also drop the last N rows from DataFrame.
Quick Examples of Drop First N Rows
Following are quick examples of dropping the first n rows from Pandas DataFrame.
# Quick examples of drop first N rows
# Number of rows to drop
n = 2
# Example 1: By using DataFrame.iloc[]
# To drop first n rows
df2 = df.iloc[n:,:]
# Example 2: Using iloc[]
# To drop first n rows
df2 = df.iloc[n:]
# Example 3: Using drop() function
# To delete first n rows
df.drop(index=df.index[:n], axis=0, inplace=True)
# Example 4: Using DataFrame.tail()
# To Drop top two rows
df2 = df.tail(df.shape[0] -n)
# Example 5: Using DataFrame.tail() function
# To drop first n rows
df2 = df.tail(-2)
First, let’s create a Pandas DataFrame.
# Create DataFrame
import pandas as pd
technologies = {
'Courses':["Spark","PySpark","Python","pandas"],
'Fee' :[20000,25000,22000,24000],
'Duration':['30days','40days','35days','60days'],
'Discount':[1000,2300,2500,2000]
}
index_labels=['r1','r2','r3','r4']
df = pd.DataFrame(technologies,index=index_labels)
print("Create DataFrame:\n", df)
Yields below output.
Using iloc[] to Drop First N Rows of DataFrame
Use DataFrame.iloc[]
the indexing syntax [n:]
with n as an integer to select the first n rows from pandas DataFrame. For example df.iloc[n:]
, substitute n with the integer number specifying how many rows you want to delete.
# Using DataFrame.iloc[]
# To drop first n rows
n = 2
df2 = df.iloc[n:]
print("After dropping first n rows:\n", df2)
# Using iloc[] to drop first n rows
df2 = df.iloc[2:]
print("After dropping first n rows:\n", df2)
Yields below output.
Delete the Top N Rows of DataFrame Using drop()
drop()
method is also used to delete rows from DataFrame based on column values (condition).- Use the
axis
parameter to specify which axis you would like to delete. By default,axis=0
means deleting rows. To delete columns, useaxis=1
or thecolumns
parameter. - Use
inplace=True
to delete a row or column directly on the existing DataFrame without creating a copy. This modifies the DataFrame object itself.
# Using drop() function
# To delete first n rows
n = 2
df.drop(index=df.index[:n], inplace=True)
print(df)
# Output:
# Courses Fee Duration Discount
# r3 Python 22000 35days 2500
# r4 pandas 24000 60days 2000
Remove First N Rows of Pandas DataFrame Using tail()
Alternatively, you can also use df.tail(df.shape[0] -n)
to remove the top/first n rows of pandas DataFrame. Generally, the DataFrame.tail()
function is used to show the last n rows of a pandas DataFrame but you can pass a negative value to skip the rows from the beginning.
# Number of rows to drop
n = 2
# Using DataFrame.tail()
# To Drop top two rows
df2 = df.tail(df.shape[0] -n)
print(df2)
# Using DataFrame.tail() function
# To drop first n rows
df2 = df.tail(-2)
print(df2)
# Output:
# Courses Fee Duration Discount
# r3 Python 22000 35days 2500
# r4 pandas 24000 60days 2000
Complete Example
Below is a complete example of dropping the first N rows.
import pandas as pd
technologies = {
'Courses':["Spark","PySpark","Python","pandas"],
'Fee' :[20000,25000,22000,24000],
'Duration':['30days','40days','35days','60days'],
'Discount':[1000,2300,2500,2000]
}
index_labels=['r1','r2','r3','r4']
df = pd.DataFrame(technologies,index=index_labels)
print(df)
# Number of rows to drop
n = 2
# By using DataFrame.iloc[]
# To drop first n rows
df2 = df.iloc[n:,:]
print(df2)
# Using iloc[]
# To drop first n rows
df2 = df.iloc[2:]
print(df2)
# Number of rows to drop
n = 2
# Using drop() function
# To delete first n rows
df.drop(index=df.index[:n],axis=0, inplace=True)
print(df)
# Number of rows to drop
n = 2
# Using DataFrame.tail()
# To Drop top two rows
df2 = df.tail(df.shape[0] -n)
print(df2)
# Using DataFrame.tail() function
# To drop first n rows
df2 = df.tail(-2)
print(df2)
FAQ on Drop First N Rows from DataFrame
You can drop the first N rows from a DataFrame using the drop
method or the iloc
method. With drop
, you can specify the indices of the rows to be removed, while with iloc
, you can select the rows based on integer-location indexing.
You can drop the first N rows in place using the inplace=True
parameter with the drop
method or by directly modifying the DataFrame using iloc
.
Another alternative to dropping rows is using the tail()
method. You can use it in combination with iloc
to exclude the last N rows, effectively removing the first N rows.
If you want to drop rows based on a condition, you can use boolean indexing. Here’s an example where rows are dropped based on a condition (e.g., dropping rows where column ‘A’ is less than 3).
Conclusion
In conclusion, we’ve explored various methods to drop the first n rows from a Pandas DataFrame. We discussed using DataFrame.iloc[]
, DataFrame.drop()
, and DataFrame.tail()
functions, each offering a different approach to achieve the same result. Additionally, we highlighted the importance of the axis
parameter and introduced the inplace=True
option for modifying the DataFrame object directly.
Happy Learning !!
Related Articles
- How to drop rows with NaN values?
- Drop Pandas rows with condition
- Pandas Correlation of Columns
- Pandas Drop Rows by Index
- Drop the First Three Rows
- How to Rename Columns With List in Pandas
- Pandas – Drop List of Rows From DataFrame
- Pandas Drop Last N Rows From DataFrame
- Find Row Values for Column Maximal
- How to Drop Rows From Pandas DataFrame