Pandas DataFrame quantile()
function is used to return values at the given quantile over the requested axis. In other words, DataFrame.quantile()
function helps the user calculate the quantile of the values in a given axis that returns Series or DataFrame.
While getting the quantile, this function arranges the data in ascending order and we can use the formula to get the position that is q*(n+1) where q is the quantile and n is the total number of elements. In this article, I will explain the pandas DataFrame quantile() function that returns Series or DataFrame.
1. Quick Examples of quantile() Function
If you are in a hurry, below are some quick examples of pandas DataFrame quantile() function.
# Below are the quick examples
# Example 1: use quantile() function
df2 = df.quantile(0.6)
# Example 2: using quantile() function for
# Get quantiles along the index axis
df2 = df.quantile([0.25, 0.5, 0.75], axis = 0)
# Example 3: using quantile() function for
# Get the quantiles along the index axis = 0
df2 = df.quantile(0.4, axis = 0)
# Example 4: using quantile() function for
# Get the quantiles along the index axis =1
df2 = df.quantile(0.5, axis = 1)
2. Syntax of Pandas DataFrame.quantile()
Following is the syntax of the Pandas DataFrame.quantile().
# Syntax of DataFrame.quantile()
DataFrame.quantile(q=0.5, axis=0, numeric_only=True, interpolation='linear')
2.1 Parameters of the quantile() Function
Following are the parameters of the quantile() function.
q
– It represents the float or array-like, and the default is 0.5 (50% quantile). The value between 0 <= q <= 1, the quantile(s) to compute.axis
– axis or axes represents the columns and rows. If axis=1 it represents the columns, and if axis=0, then it represents the rows.numeric_only
– It represents bool(True or False), the default is True. If the parameter is False, the quantile of DateTime and time delta information will be registered too.interpolation
– {‘linear’, ‘lower’, ‘higher’, ‘midpoint’, ‘nearest’}: This optional parameter specifies that is always assigned to linear by default.
2.2 Return Value quantile()
It returns Series or DataFrame.
3. Create Pandas DataFrame
Python pandas is widely used for data science/data analysis and machine learning applications. It is built on top of another popular package named Numpy, which provides scientific computing in Python. pandas DataFrame is a 2-dimensional labeled data structure with rows and columns (columns of potentially different types like integers, strings, float, None, Python objects e.t.c). You can think of it as an excel spreadsheet or SQL table.
Lets create pandas DataFrame from Python dictionary in which keys
are "Student Names",'Age','Height' and 'Weight'
, and values
are taken as a list of corresponding key values
.
import pandas as pd
# Create a DataFrame
technologies = [
("Jenny", 22, 140, 40),
("Charles", 28, 145, 50),
("Veena", 34, 130, 45)
]
df = pd.DataFrame(technologies,columns = ["Student Names",'Age','Height','Weight'])
print(df)
Yields below output.
# Output:
Student Names Age Height Weight
0 Jenny 22 140 40
1 Charles 28 145 50
2 Veena 34 130 45
4. Use quantile() Function
By using the quantile() function let’s calculate the quantile at 0.6
of the pandas DataFrame. This calculates the quantile of every numeric columns and excludes the character columns.
# Use quantile() function
df2 = df.quantile(0.6)
print(df2)
Yields below output.
# Output:
Age 29.2
Height 141.0
Weight 46.0
Name: 0.6, dtype: float64
We can also get the (0.25, 0.5, 0.75)
quantiles along the index axis, using the quantile()
function.
# Using quantile() function for
# get quantiles along the index axis
df2 = df.quantile([0.25, 0.5, 0.75], axis = 0)
print(df2)
Yields below output.
# Output:
Age Height Weight
0.25 25.0 135.0 42.5
0.50 28.0 140.0 45.0
0.75 31.0 142.5 47.5
5. Get the Quantile Along the Axis = 0
Create a DataFrame and get the quantile at 0.4
using the df.quantile()
function. we pass the first parameter for the function as 0.4
and pass the axis parameter as 0
so that the quantiles are calculated in columns.
# Using quantile() function for
# get the quantiles along the index axis = 0
df2 = df.quantile(0.4, axis = 0)
print(df2)
Yields below output.
# Output:
Age 26.8
Height 138.0
Weight 44.0
Name: 0.4, dtype: float64
6. Get the Quantile Along the Axis = 1
Create a DataFrame by calculating quantile at 0.5 using the DataFrame.quantile()
function over the column axis. Following the below example, at index ‘0’, the quantile is 40.0 for three values, at index ‘1’ the quantile is 50.0 for three values.
# Using quantile() function for
# get the quantiles along the index axis =1
df2 = df.quantile(0.5, axis = 1)
print(df2)
Yields below output.
# Output:
0 40.0
1 50.0
2 45.0
Name: 0.5, dtype: float64
7. Conclusion
In this article, you have learned the pandas DataFrame quantile()
function by using DataFrame.quantile()
function and with more examples. and you have also learned the syntax, and parameters of DataFrame.quantile()
function.
Happy Learning !!
Related Articles
- Pandas Aggregate Functions with Examples
- Convert Pandas DatetimeIndex to String
- Python Pandas – Convert JSON to CSV
- How to Read CSV from String in Pandas
- How to Convert Pandas Series to list
- How to Get Size of Pandas DataFrame?
- How to Count Duplicates in Pandas DataFrame
- Pandas DataFrame count() Function
- How to Convert Pandas DataFrame to List?