To count the number of columns in a pandas DataFrame, you can use various methods such as shape[]
, len()
, list()
, and info()
methods. In this article, I will explain how to count the number of columns in a pandas DataFrame using different functions.
Key Points –
- The
.shape
attribute returns a tuple(rows, columns)
where the second element is the column count. - Applying
len()
todf.columns
gives the count of columns directly. - Accessing
df.columns.size
provides the number of columns as an integer. - Calling
df.columns.count()
also returns the total number of columns. - The
df.info()
method provides an overview including the number of columns, along with column names and data types.
Quick Examples of Count Columns of DataFrame
Below are quick examples of how to count columns in Pandas DataFrame.
# Quick examples of count columns of dataframe
# Example 1:Pandas count columns
# Using DataFrame.shape()
df2 = df.shape[1]
# Example 2: Pandas count columns and rows
df2 = df.shape
# Example 3: Pandas count columns
# Using len()
df2 = len(df.columns)
# Example 4: Using columns property
col = df.columns
df2 = len(col)
# Example 5: Pandas count columns
# Using list()
df_list = list(df)
df2 = len(df_list)
# Example 5: Using DataFrame.info() function
df2 = df.info()
To run some examples of getting pandas to count the number of columns, let’s create a Pandas DataFrame.
# Create Count Columns of DataFrame
import pandas as pd
import numpy as np
technologies= ({
'Courses':["Spark","PySpark","Hadoop","Pandas"],
'Fee': [22000,25000,30000,35000],
'Duration':['30days','50days','40days','35days'],
'Discount':[1000,2000,2500,1500]
})
index_labels=['r1','r2','r3','r4']
df = pd.DataFrame(technologies,index=index_labels)
print(df)
Yields below output.
# Output:
Courses Fee Duration Discount
r1 Spark 22000 30days 1000
r2 PySpark 25000 50days 2000
r3 Hadoop 30000 40days 2500
r4 Pandas 35000 35days 1500
Use DataFrame.shape() Function to Count Columns
Pandas DataFrame provides a shape property that returns the number of count columns and rows shape of the DataFrame in a tuple, where the shape[0]
element is a row count and shape[1]
is the columns count. Below is an example. To learn more about shape, refer to DataFrame.shape[]
# Pandas count columns
# Using DataFrame.shape()
df2 = df.shape[1]
print(df2)
# Output:
# 4
# Pandas count columns and rows
df2 = df.shape
print(df2)
# Output:
# (4, 4)
Count Columns Using len()
To count the number of columns in a pandas DataFrame using the len()
function, you can apply it to the .columns
attribute of the DataFrame. The .columns
attribute returns an Index object containing the column labels, and using len()
on this Index object will give you the count of columns. For example len(df.columns)
returns the number of columns in a DataFrame.
# Pandas count columns
# Using len()
df2 = len(df.columns)
print(df2)
# Using columns property
col = df.columns
df2 = len(col)
print(df2)
# Output:
# 4
Count Columns Using list()
Alternatively, You can also use the list()
with the combination of len()
function to get the count of DataFrame columns. Here, list()
takes the DataFrame as input and returns the data in a list.
# Pandas count columns
# Using list()
df_list = list(df)
df2 = len(df_list)
print(df2)
# Output:
# 4
Using Pandas DataFrame.info() Function
The Pandas DataFrame.info()
function offers comprehensive details about the DataFrame, encompassing column data types, index information, memory consumption, column count, and more.
# Using DataFrame.info() function
df2 = df.info()
print(df2)
Yields below output.
# Output:
Index: 4 entries, r1 to r4
Data columns (total 4 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 Courses 4 non-null object
1 Fee 4 non-null int64
2 Duration 4 non-null object
3 Discount 4 non-null int64
dtypes: int64(2), object(2)
memory usage: 160.0+ bytes
None
Complete Example For Count Columns
import pandas as pd
import numpy as np
technologies= ({
'Courses':["Spark","PySpark","Hadoop","Pandas"],
'Fee': [22000,25000,30000,35000],
'Duration':['30days','50days','40days','35days'],
'Discount':[1000,2000,2500,1500]
})
index_labels=['r1','r2','r3','r4']
df = pd.DataFrame(technologies,index=index_labels)
print(df)
# Pandas count columns
# Using DataFrame.shape()
df2 = df.shape[1]
print(df2)
# Pandas count columns and rows
df2 = df.shape
print(df2)
# Pandas count columns
# Using len()
df2 = len(df.columns)
print(df2)
# Using columns property
col = df.columns
df2 = len(col)
print(df2)
# Pandas count columns
# Using list()
df_list = list(df)
df2 = len(df_list)
print(df2)
# Using DataFrame.info() function
df2 = df.info()
print(df2)
FAQ on Get Pandas Columns Count
You can get the number of columns in a DataFrame using the shape
attribute. The second value returned by shape
represents the column count.
There is no dedicated method in Pandas specifically to count columns directly. However, you can easily get the number of columns using a few straightforward approaches.
You can use the info()
method to get an overview of the DataFrame, which includes the number of columns. When you call df.info()
, the output provides.
describe()
provides a summary of numerical columns but doesn’t explicitly count columns. However, you can infer the count by checking the number of statistics displayed.
You can use conditional filtering to count columns that meet certain criteria. For example, to count columns with numerical data types.
Conclusion
In conclusion, understanding how to count columns in a Pandas DataFrame is essential for data analysis and manipulation tasks. In this article, we explored several approaches to achieve this, including using the shape[]
, len()
, list()
, and info()
functions.
Happy Learning !!
Related Articles
- Pandas DataFrame count() Function
- Pandas Count Unique Values in Column
- Count NaN Values in Pandas DataFrame
- How to Create Pandas Pivot Table Count
- Pandas Count Distinct Values DataFrame
- Pandas melt() DataFrame Example
- Select pandas columns based on condition
- Pandas convert column to string-type
- How to sum Pandas DataFrame rows?
- Pandas Count Rows with Condition
- Split Pandas DataFrame by column value
- How to Count Duplicates in Pandas DataFrame
- How to Count Duplicates in Pandas DataFrame
- Split the column of DataFrame into two columns
- Pandas Check Column Contains a Value in DataFrame
- Pandas Convert Row to Column Header in DataFrame
- Pandas Extract Column Value Based on Another Column