Use pandas DataFrame.astype(int)
and DataFrame.apply() methods to cast float column to integer(int/int64) type. I believe you would know float is bigger than int type, so you can easily downcase but the catch is you would lose any value after the decimal. Note that while casting it doesn’t do any rounding and flooring and it just truncates the fraction values (anything after .). In this article, I will explain different ways to convert columns with float values to integer values.
1. Quick Examples of pandas Convert Float to Integer
If you are in a hurry, below are some of the quick examples of how to convert float to integer type in DataFrame.
# Below are quick examples
# Converting "Fee" from float to int using DataFrame.astype()
df["Fee"]=df["Fee"].astype(int)
print(df.dtypes)
# Converting "Fee" and "Discount" from float to int using DataFrame.astype()
df = df.astype({"Fee":"int","Discount":"int"})
print(df.dtypes)
# Convert "Fee" from float to int using DataFrame.apply(np.int64)
df["Fee"] = df["Fee"].apply(np.int64)
print(df.dtypes)
# Converting "Fee" and "Discount" from float to int using DataFrame.apply(np.int64)
df["Fee"] = df["Fee"].apply(np.int64)
df["Discount"] = df["Discount"].apply(np.int64)
# Convert "Fee" from float to int and replace NaN values
df['Fee'] = df['Fee'].fillna(0).astype(int)
print(df)
print(df.dtypes)
Now, let’s create a DataFrame with a few rows and columns and execute some examples and validate the results. Our DataFrame contains column names Courses
, Fee
, Duration
and Discount
.
# Create DataFrame
import pandas as pd
import numpy as np
technologies= {
'Courses':["Spark","PySpark","Hadoop","Python","Pandas"],
'Fee' :[22000.30,25000.40,23000.20,24000.50,26000.10],
'Duration':['30days','50days','35days', '40days','55days'],
'Discount':[1000.10,2300.15,1000.5,1200.22,2500.20]
}
df = pd.DataFrame(technologies)
print(df)
print(df.dttypes)
Yields below output.
# Output:
Courses Fee Duration Discount
0 Spark 22000.3 30days 1000.10
1 PySpark 25000.4 50days 2300.15
2 Hadoop 23000.2 35days 1000.50
3 Python 24000.5 40days 1200.22
4 Pandas 26000.1 55days 2500.20
Courses object
Fee float64
Duration object
Discount float64
dtype: object
2. pandas Convert Float to int (Integer)
use pandas DataFrame.astype()
function to convert float to int (integer), you can apply this on a specific column. Below example converts Fee
column to int32
from float64
. You can also use numpy.dtype
as a param to this method.
# Convert "Fee" from float to int
df["Fee"]=df["Fee"].astype(int)
print(df)
print(df.dtypes)
Yields below output.
# Output:
Courses Fee Duration Discount
0 Spark 22000 30days 1000.10
1 PySpark 25000 50days 2300.15
2 Hadoop 23000 35days 1000.50
3 Python 24000 40days 1200.22
4 Pandas 26000 55days 2500.20
Courses object
Fee int32
Duration object
Discount float64
dtype: object
3. Casting Multiple Columns From Float to Integer
Similarly, you can also convert multiple columns from float to integer by sending dict of column name -> data type to astype()
method. The below example converts both columns Fee
and Discoun
t to int types.
# Converting "Fee" and "Discount" from float to int
df = df.astype({"Fee":"int","Discount":"int"})
print(df.dtypes)
Yields below output.
# Output:
Courses object
Fee int32
Duration object
Discount int32
dtype: object
4. Using apply(np.int64) to Cast From Float to Integer
You can also use DataFrame.apply() method to convert Fee
column from float to integer in pandas. As you see in this example we are using numpy.dtype (np.int64) .
import numpy as np
# Convert "Fee" from float to int using DataFrame.apply(np.int64)
df["Fee"] = df["Fee"].apply(np.int64)
print(df.dtypes)
Yields below output.
# Output:
Courses object
Fee int64
Duration object
Discount float64
dtype: object
5. Convert Column Containing NaNs to astype(int)
In order to demonstrate some NaN/Null
values, let’s create a DataFrame using NaN Values. To convert a column that includes a mixture of float and NaN values to int, first replace NaN values with zero on pandas DataFrame and then use astype()
to convert.
import pandas as pd
import numpy as np
technologies= {
'Fee' :[22000.30,25000.40,np.nan,24000.50,26000.10,np.nan]
}
df = pd.DataFrame(technologies)
print(df)
print(df.dtypes)
Use .fillna()
to replace the NaN values with integer value zero. For Example df['Fee']=df['Fee'].fillna(0).astype(int)
method.
# Convert "Fee" from float to int and replace NaN values
df['Fee'] = df['Fee'].fillna(0).astype(int)
print(df)
print(df.dtypes)
Yields below output.
# Output:
Fee
0 22000
1 25000
2 0
3 24000
4 26000
5 0
Fee int32
dtype: object
Conclusion
In this article, you have learned how to convert float column to integer in DataFrame using DataFrame.astype(int)
and DataFrame.apply()
method. Also, you have learned how to convert float to integers when you have Nan/null values in a column.
Happy Learning !!
Related Articles
- How to Convert String to Float in pandas DataFrame
- How to Convert Index to Column in pandas DataFrame.
- How to Replace Nan/Null to Empty String in pandas
- Pandas Convert Column to Int in DataFrame
- Pandas Convert Integer to Datetime Type
- Pandas Convert Datetime to Date Column
- Pandas Convert Multiple Columns To DateTime Type
- Pandas Convert String to Integer
- How to Convert Pandas DataFrame to List?
- Pandas Convert List of Dictionaries to DataFrame
- Pandas – Convert DataFrame to Dictionary (Dict)