• Post author:
  • Post category:Pandas
  • Post last modified:April 25, 2024
  • Reading time:15 mins read
You are currently viewing Pandas append() Usage by Examples

pandas.DataFrame.append() method is used to append one DataFrame row(s) and column(s) with another, it can also be used to append multiple (three or more) DataFrames. This method takes other (DataFrame you wanted to append), ignore_index, verify_integrity, sort as parameters and returns a new DataFrame with the combined result.

Advertisements

In this article, I will explain how to append pandas DataFrames with examples like appending rows, and columns, ignoring the index while appending, and more by using its parameters.

Key Points –

  • Pandas append() method is used to concatenate or append new rows of data to an existing DataFrame.
  • The append() function returns a new DataFrame containing the combined data from the original DataFrame and the appended data.
  • It is useful for combining multiple datasets vertically when they have the same columns.
  • append() can be less efficient than other methods like when dealing with large datasets due to creating
    a new DataFrame.

Pandas append() Syntax

Below is the syntax of pandas.DataFrame.append() method.


# Syntax of append()
DataFrame.append(other, ignore_index=False, verify_integrity=False, sort=False)
  • other – DataFrame or Series/dict-like object, or list of these.
  • ignore_index – bool, default False. When set to True, It creates an axis with an incremental numeric number.
  • verify_integrity – bool, default False. When set to True, raises an error for the duplicate index.
  • sort – bool, default False.

Alternatively, you can also use pandas.DataFrame.concat() to concatenate DataFrames which can also be used to append.

Append Two DataFrames With the Same Columns

To run some examples of pandas append() function, let’s create a DataFrame from dict.


# Create two DataFrames with same columns
import pandas as pd

df1 = pd.DataFrame({'Courses': ["Spark","PySpark","Python","pandas"],
                    'Fee' : [20000,25000,22000,24000]})
print("First DataFrame:\n", df1)

df2 = pd.DataFrame({'Courses': ["Pandas","Hadoop","Hyperion","Java"],
                    'Fee': [25000,25200,24500,24900],
                    'Duration': ['30days','35days','40days','45days']})
print("Second DataFrame:\n", df2)

Yields below output.

pandas append DataFrame

The concat() function can be used to concatenate or append two DataFrames along either axis (rows or columns). When concatenating DataFrames with the same columns, the concat() function will align the columns and append rows, adding NaN values for any missing columns in either DataFrame. This allows for combining DataFrames even if they do not have exactly the same set of columns.


# Append two DataFrames of same columns
# using append() function
df3 = df1.append(df2)
print("After appending DataFrames:\n", df3)
pandas append DataFrame

Append Two DataFrames Ignore Index

When using the append() function in Pandas, by default, it preserves the indices of the original DataFrames. However, you can specify ignore_index=True to ignore the original indices and generate a new sequential index.


# Using append() with ignore_index
df2 = df.append(df1, ignore_index=True)
print(df2)

Yields below output.


# Output:
    Courses    Fee Duration
0     Spark  20000      NaN
1   PySpark  25000      NaN
2    Python  22000      NaN
3    pandas  24000      NaN
4    Pandas  25000   30days
5    Hadoop  25200   35days
6  Hyperion  24500   40days
7      Java  24900   45days

Append Dict as Row to DataFrame

Sometimes you would be required to append a dict as a row to DataFrame. The below example demonstrates how to do this with example. First, create a Dict and add it to the df object.


# Append Dict as row to DataFrame
new_row = {'Courses':'Hyperion', 'Fee':24000}
df2=df.append(new_row, ignore_index=True)
print(df2)

Yields below output.


# Output:
    Courses    Fee
0     Spark  20000
1   PySpark  25000
2    Python  22000
3    pandas  24000
4  Hyperion  24000

Append Multiple DataFrames

Similarly, to append multiple DataFrames in Pandas using the append() method, you can pass the DataFrames as a list. By setting ignore_index=True, you reset the index to start from zero.


# Create third DataFrame  
df2 = pd.DataFrame({'Courses':['PHP','GO'],
                    'Duration':['30day','40days'],
                    'Fee':[10000,23000]})
  
# Appending multiple DataFrame
df3 = df.append([df1, df2], ignore_index=True)
print(df3)

Yields below output


# Output:
    Courses    Fee Duration
    Courses    Fee Duration
0     Spark  20000      NaN
1   PySpark  25000      NaN
2    Python  22000      NaN
3    pandas  24000      NaN
4    Pandas  25000   30days
5    Hadoop  25200   35days
6  Hyperion  24500   40days
7      Java  24900   45days
8       PHP  10000    30day
9        GO  23000   40days

Complete Example


# Example of pandas append()
import pandas as pd

df = pd.DataFrame({'Courses': ["Spark","PySpark","Python","pandas"],
                    'Fee' : [20000,25000,22000,24000]})

df1 = pd.DataFrame({'Courses': ["Pandas","Hadoop","Hyperion","Java"],
                    'Fee': [25000,25200,24500,24900],
                    'Duration': ['30days','35days','40days','45days']})

# Using append() method
df2 = df.append(df1)
print(df2)

# Using append() with ignore_index
df2 = df.append(df1, ignore_index=True)
print(df2)

# Create third DataFrame  
df2 = pd.DataFrame({'Courses':['PHP','GO'],
                    'Duration':['30day','40days'],
                    'Fee':[10000,23000]})
  
# Appending multiple DataFrame
df3 = df.append([df1, df2], ignore_index=True)
print(df3)

# Append Dict as row to DataFrame
new_row = {'Courses':'Hyperion', 'Fee':24000}
df2=df.append(new_row, ignore_index=True)
print(df2)

Frequently Asked Questions on append() Function

What is the purpose of the Pandas append() method?

The append() method in Pandas is used to concatenate or append new rows of data to an existing DataFrame.

What is the append() function in Pandas?

The append() function in Pandas is used to concatenate rows from one DataFrame to another DataFrame. It appends rows from one DataFrame to the end of another DataFrame, effectively stacking them vertically.

How do I use the append() function in Pandas?

You can use the append() function by calling it on a DataFrame object and passing another DataFrame or a list of DataFrames that you want to append. Optionally, you can set ignore_index=True to reset the index of the resulting DataFrame to start from zero.

What happens to the index when I append DataFrames using append() in Pandas?

By default, the index of the original DataFrames is preserved. However, if you set ignore_index=True, the index is reset, and a new sequential index starting from zero is assigned to the resulting DataFrame.

Can I append multiple DataFrames at once using append() in Pandas?

You can append multiple DataFrames at once by passing them as a list to the append() function. For example, df.append([df1, df2], ignore_index=True) will append the rows of df1 and df2 to df, and reset the index.

Conclusion

By using the append() method you can append one DataFrame with another by rows and columns. This method takes other (pass list for multiple dataframes), ignore_index, verify_integrity, sort as parameters, and returns a new DataFrame with the combined result. Note that when you have an additional column on any of the DataFrame, it appends the column with NaN on the result for rows the same column does not exist.

References