NumPy exp()
in Python is a mathematical function used to calculate the exponential values of all the elements present in the input array. This function takes four arguments which are array
, out
, where
, dtype
, and returns an array containing all the exponential values of the input array.
In this article, I will explain syntax and how to use the numpy.exp()
function on single and multi-dimension arrays.
1. Quick Examples of NumPy Exponential Function
If you are in a hurry, below are some quick examples of how to use the NumPy exponential function.
# Below are the quick examples
# Example 1: Get the exponential Value of single element
arr = np.exp(3)
# Example 2: Get the exponential values of multiple elements of 1-d array
arr = [2, 5, 8]
arr2 = np.exp(arr)
# Example 3: Get the exponential values of 2-D numpy array elements
arr = np.array([[4, 6, 3, 7], [8, 5, 2, 9]])
arr2 = np.exp(arr)
# Example 4: Use numpy.exp() function to graphical representation
arr = [1, 1.4, 1.8, 2, 2.6, 3]
out_array = np.exp(arr)
arr2 = [1, 1.3, 1.6, 2.3, 2.8, 3]
plt.plot(arr, arr2, color = 'green', marker = "*")
# Yellow for numpy.exp()
plt.plot(out_array, arr2, color = 'yellow', marker = "o")
plt.title("numpy.exp()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
2. Syntax of numpy.exp()
Following is the syntax of the numpy.exp()
 function.
#Syntax of numpy.exp()
numpy.exp(arr, out = None, where = True, casting = ‘same_kind’, order = ‘K’, dtype = None)
2.1 Parameters of numpy.exp()
arr :
Input array.out :
An array where the result is stored. When provided, it must have the shape of the inputs.where:
optionaldtype
– Type of the returned array and it is optional.
2.2 Return Value of numpy.exp()
This function returns an array containing all the exponential values of all elements of the input array.
3. Use NumPy exp() to get Exponential Value
This mathematical Python NumPy exp()
function is used to calculate the exponential values of all the elements present in the input array.
import numpy as np
# get the exponential Value of single element
arr = np.exp(3)
print(arr)
# Output
# 20.085536923187668
3.2 Get the Exponential Values of Multiple Elements of 1-D Array
To calculate the exponential values of integer array elements by using the numpy.exp()
function. For example,
# Create an 1D input array
arr = [2, 5, 8]
# Get the exponential values of multiple elements of 1-d array
arr2 = np.exp(arr)
print (arr2)
# Output
# [ 7.3890561 148.4131591 2980.95798704]
4. Get the Exponential Values of 2-D NumPy Array Elements
Let’s use a 2-Dimensional array and get the exponential values for all elements in the array. Let’s create a 2-D NumPy array using numpy.array().
# creating an 2D input array
arr = np.array([[4, 6, 3, 7], [8, 5, 2, 9]])
# get the exponential values of 2-D numpy array elements
arr2 = np.exp(arr)
print(arr2)
# Output
# [[5.45981500e+01 4.03428793e+02 2.00855369e+01 1.09663316e+03]
# [2.98095799e+03 1.48413159e+02 7.38905610e+00 8.10308393e+03]]
5. Use numpy.exp() Function to Graphical Representation
We can use NumPy exp()
function and represent the value graphically using the MatLab library.
import numpy as np
import matplotlib.pyplot as plt
# Use numpy.exp() function to graphical representation
arr = [1, 1.4, 1.8, 2, 2.6, 3]
out_array = np.exp(arr)
arr2 = [1, 1.3, 1.6, 2.3, 2.8, 3]
plt.plot(arr, arr2, color = 'green', marker = "*")
# yellow for numpy.exp()
plt.plot(out_array, arr2, color = 'yellow', marker = "o")
plt.title("numpy.exp()")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
Yields below output.

You can see the Parabolic graph of the exp() function in Numpy.
6. Conclusion
In this article, I have explained how to use Python numpy.exp()
function and how to calculate the exponential value of every element in the given array with examples by using 1-D and 2-D arrays.
Happy Learning!!
Related Articles
- How to get the power value of array
- Get the cumulative sum of array
- Python NumPy square() Function
- numpy.divide() Function
- How to transpose the NumPy array
- How to Check NumPy Array Equal?
- How to Transpose Matrix in NumPy
- Python NumPy Interpolate Function