Spark SQL Inner Join with Example

Spark SQL Inner Join

Spark SQL Inner join is the default join in and it’s mostly used, this joins two DataFrame/Datasets on key columns, where keys don’t match the rows get dropped from both datasets.

In this Spark article, I will explain how to do Inner Join( Inner) on two DataFrames with Scala Example.

Before we jump into Spark Inner Join examples, first, let’s create an emp and dept DataFrame’s. here, column emp_id is unique on emp and dept_id is unique on the dept DataFrame and emp_dept_id from emp has a reference to dept_id on dept dataset.


   import org.apache.spark.sql.SparkSession
     val spark = SparkSession.builder
       .appName("sparkbyexamples.com")
       .master("local")
       .getOrCreate()

  val emp = Seq((1,"Smith",-1,"2018","10","M",3000),
    (2,"Rose",1,"2010","20","M",4000),
    (3,"Williams",1,"2010","10","M",1000),
    (4,"Jones",2,"2005","10","F",2000),
    (5,"Brown",2,"2010","40","",-1),
      (6,"Brown",2,"2010","50","",-1)
  )
  val empColumns = Seq("emp_id","name","superior_emp_id","year_joined",
       "emp_dept_id","gender","salary")
  import spark.sqlContext.implicits._
  val empDF = emp.toDF(empColumns:_*)
  empDF.show(false)

  val dept = Seq(("Finance",10),
    ("Marketing",20),
    ("Sales",30),
    ("IT",40)
  )

  val deptColumns = Seq("dept_name","dept_id")
  val deptDF = dept.toDF("deptColumns")
  deptDF.show(false)

This prints emp and dept DataFrame to console.


Emp Dataset
+------+--------+---------------+-----------+-----------+------+------+
|emp_id|name    |superior_emp_id|year_joined|emp_dept_id|gender|salary|
+------+--------+---------------+-----------+-----------+------+------+
|1     |Smith   |-1             |2018       |10         |M     |3000  |
|2     |Rose    |1              |2010       |20         |M     |4000  |
|3     |Williams|1              |2010       |10         |M     |1000  |
|4     |Jones   |2              |2005       |10         |F     |2000  |
|5     |Brown   |2              |2010       |40         |      |-1    |
|6     |Brown   |2              |2010       |50         |      |-1    |
+------+--------+---------------+-----------+-----------+------+------+

Dept Dataset
+---------+-------+
|dept_name|dept_id|
+---------+-------+
|Finance  |10     |
|Marketing|20     |
|Sales    |30     |
|IT       |40     |
+---------+-------+

Spark DataFrame Inner Join Example

Below is a Spark DataFrame example using Inner Join as a join type.

 empDF.join(deptDF,empDF("emp_dept_id") ===  deptDF("dept_id"),"inner")
    .show(false)

When we apply Inner join on our datasets, It drops “emp_dept_id” 60 from “emp” and “dept_id” 30 from “dept” datasets. Below is the result of the above Join expression.


+------+--------+---------------+-----------+-----------+------+------+---------+-------+
|emp_id|name    |superior_emp_id|year_joined|emp_dept_id|gender|salary|dept_name|dept_id|
+------+--------+---------------+-----------+-----------+------+------+---------+-------+
|1     |Smith   |-1             |2018       |10         |M     |3000  |Finance  |10     |
|2     |Rose    |1              |2010       |20         |M     |4000  |Marketing|20     |
|3     |Williams|1              |2010       |10         |M     |1000  |Finance  |10     |
|4     |Jones   |2              |2005       |10         |F     |2000  |Finance  |10     |
|5     |Brown   |2              |2010       |40         |      |-1    |IT       |40     |
+------+--------+---------------+-----------+-----------+------

Using Spark SQL Inner Join

Let’s see how to use Inner Join on Spark SQL expression, In order to do so first let’s create a temporary view for EMP and DEPT tables.

<pre><code class="language-scala">

empDF.createOrReplaceTempView("EMP")
deptDF.createOrReplaceTempView("DEPT")

joinDF2 = spark.sql("SELECT e.* FROM EMP e INNER JOIN DEPT d ON e.emp_dept_id == d.dept_id") \
  .show(truncate=False)
</code></pre>

This also returns same output as above.

Conclusion

In this Spark article, Inner join is the default join in Spark and it’s mostly used. This joins two datasets on key columns.where keys don’t match the rows get dropped from both datasets (emp & dept).

Hope you Like it !!

References:

Leave a Reply