• Post author:
  • Post category:Pandas
  • Post last modified:May 20, 2024
  • Reading time:17 mins read
You are currently viewing Pandas Combine Two Columns of Text in DataFrame

To combine two columns of text in DataFrame, you can use the + operator and series.str.cat() function. When working with data we often would be required to combine/merge two or multiple columns of text/string in Pandas DataFrame.

Advertisements

In this article, I will explain how combining two columns of text/string using multiple ways of pandas such as the apply() function, agg() function, apply() function with lambda, and map() function.

Key Points –

  • Pandas allows combining two columns of text in a DataFrame using various methods.
  • Use the + operator or the str.cat() method to concatenate text from two columns in a Pandas DataFrame.
  • The .str.cat() method provides more flexibility in concatenating columns and specifying separators.
  • Ensure to handle missing values appropriately using parameters like na_rep in str.cat() to avoid errors during concatenation.

Quick Examples of Combine Two Columns of Text

If you are in a hurry, below are some quick examples of combining two columns of text in Pandas DataFrame.


# Quick examples of combine two columns of text

# Example 1: Using + operator to combine two columns
df["Period"] = df['Courses'].astype(str) +"-"+ df["Duration"]

# Example 2: Using apply() method to combine two columns of text
df["Period"] = df[["Courses", "Duration"]].apply("-".join, axis=1)

# Example 3: Using DataFrame.agg() to combine two columns of text
df["period"] = df[['Courses', 'Duration']].agg('-'.join, axis=1)

# Example 4: Using Series.str.cat() function
df["Period"] = df["Courses"].str.cat(df["Duration"], sep="-")

# Example 5: Using DataFrame.apply() and lambda function
df["Period"] = df[["Courses", "Duration"]].apply(lambda x: "-".join(x), axis =1)

# Example 6: Using map() function to combine two columns of text
df["Period"] = df["Courses"].map(str) + "-" + df["Duration"]

Now, let’s run these examples by creating a DataFrame. Our DataFrame contains column names Courses, Fee, Duration, and Discount, I will merge the columns Courses & Duration with ‘-‘ separator and creates a new column Period.


# Create DataFrame
import pandas as pd
technologies = ({
     'Courses':["Spark","PySpark","Hadoop","Python","pandas"],
     'Fee' :[20000,25000,26000,22000,24000],
     'Duration':['30days','40days','35days','40days','60days'],
     'Discount':[1000,1500,2500,2100,2000]
               })
df = pd.DataFrame(technologies)
print("Create DataFrame:\n", df)

Yields below output.

Pandas Combine Two Columns

Combine Two Columns Using + Operator

Using the + operator to combine/merge two or multiple text/string columns in Pandas DataFrame. Note that when you apply this operator on numeric columns it actually does addition instead of concatenation.


# Using + operator to combine two columns
df["Period"] = df['Courses'].astype(str) +"-"+ df["Duration"]
print("After combining two columns of DataFrame:\n", df)

Yields below output.

Pandas Combine Two Columns

Using Series.str.cat() Function

By using series.str.cat() function you can combine two Series by a separator. You can apply this with DataFrame as below. Here df["courses"] & df["Duration"] returns series.


# Using Series.str.cat() function 
df["Period"] = df["Courses"].str.cat(df["Duration"], sep = "-")
print("After combining two columns of DataFrame:\n", df)

# Output:
# After combining two columns of DataFrame:
#    Courses    Fee Duration  Discount          period
#0    Spark  20000   30days      1000    Spark-30days
#1  PySpark  25000   40days      1500  PySpark-40days
#2   Hadoop  26000   35days      2500   Hadoop-35days
#3   Python  22000   40days      2100   Python-40days
#4   pandas  24000   60days      2000   pandas-60days

Using apply() Method

You can also use the Pandas apply() function to compress two or multiple columns of the DataFrame to a single column. join() function is used to join strings. DataFrame.apply() function is used to apply another function on a specific axis.


# Using apply() method to combine two columns of text
df["Period"] = df[["Courses", "Duration"]].apply("-".join, axis=1)
print("After combining two columns of DataFrame:\n", df)

# Output:
# After combining two columns of DataFrame:
#     Courses    Fee Duration  Discount          Period
# 0    Spark  20000   30days      1000    Spark-30days
# 1  PySpark  25000   40days      1500  PySpark-40days
# 2   Hadoop  26000   35days      2500   Hadoop-35days
# 3   Python  22000   40days      2100   Python-40days
# 4   pandas  24000   60days      2000   pandas-60days

Using DataFrame.agg() Method

To join multiple string columns, you can also use DataFrame.agg() method. Like above pass all the columns you want to merge as a list.


# Using DataFrame.agg() to combine two columns of text
df["period"] = df[['Courses', 'Duration']].agg('-'.join, axis=1)
print("After combining two columns of DataFrame:\n", df)

# Output:
# After combining two columns of DataFrame:
#     Courses    Fee Duration  Discount          Period
# 0    Spark  20000   30days      1000    Spark-30days
# 1  PySpark  25000   40days      1500  PySpark-40days
# 2   Hadoop  26000   35days      2500   Hadoop-35days
# 3   Python  22000   40days      2100   Python-40days
# 4   pandas  24000   60days      2000   pandas-60days

Using DataFrame.apply() and Lambda Function

apply() method with lambda can be used to achieve the same. You can use this method to generalize to an arbitrary number of string columns by replacing df[[“Courses”, “Duration”]] with any column slice of your DataFrame.


# Using DataFrame.apply() and lambda function
df["Period"] = df[["Courses", "Duration"]].apply(lambda x: " ".join(x), axis =1)
print("After combining two columns of DataFrame:\n", df)

# Output:
# After combining two columns of DataFrame:
#     Courses    Fee Duration  Discount          Period
# 0    Spark  20000   30days      1000    Spark-30days
# 1  PySpark  25000   40days      1500  PySpark-40days
# 2   Hadoop  26000   35days      2500   Hadoop-35days
# 3   Python  22000   40days      2100   Python-40days
# 4   pandas  24000   60days      2000   pandas-60days

Combine Two Columns of Text Using map() Function

Finally, map() is also used to concatenate multiple columns. Using map() you get more freedom even to check conditions.


# Using map() function to combine two columns of text
df["Period"] = df["Courses"].map(str) + " " + df["Duration"]
print("After combining two columns of DataFrame:\n", df)

# Output:
# After combining two columns of DataFrame:
#     Courses    Fee Duration  Discount          Period
# 0    Spark  20000   30days      1000    Spark-30days
# 1  PySpark  25000   40days      1500  PySpark-40days
# 2   Hadoop  26000   35days      2500   Hadoop-35days
# 3   Python  22000   40days      2100   Python-40days
# 4   pandas  24000   60days      2000   pandas-60days

Complete Example For Combine Two Columns of Text


import pandas as pd
technologies = ({
     'Courses':["Spark","PySpark","Hadoop","Python","pandas"],
     'Fee' :[20000,25000,26000,22000,24000],
     'Duration':['30days','40days','35days','40days','60days'],
     'Discount':[1000,1500,2500,2100,2000]
               })
df = pd.DataFrame(technologies)
print(df)

# Using + operator to combine two columns
df["Period"] = df['Courses'].astype(str) +"-"+ df["Duration"]
print(df)

# Using apply() method to combine two columns of text
df["Period"] = df[["Courses", "Duration"]].apply("-".join, axis=1)
print(df)

# Using DataFrame.agg() to combine two columns of text
df["period"] = df[['Courses', 'Duration']].agg('-'.join, axis=1)
print(df)

# Using Series.str.cat() function
df["Period"] = df["Courses"].str.cat(df["Duration"], sep = "-")
print(df)

# Using DataFrame.apply() and lambda function
df["Period"] = df[["Courses", "Duration"]].apply(lambda x: "-".join(x), axis =1)
print(df)

# Using map() function to combine two columns of text
df["Period"] = df["Courses"].map(str) + "-" + df["Duration"]
print(df)

Frequently Asked Questions on Combine Two Columns of Text

Can I combine more than two columns of text in a DataFrame?

You can combine more than two columns of text in a DataFrame. You can use the same methods like the + operator or the .str.cat() method to combine multiple columns.

How do I concatenate (join) columns with a separator in a DataFrame?

You can concatenate (join) columns with a separator in a DataFrame using the .str.cat() method. This method allows you to specify a separator between the concatenated values.

How can I merge two DataFrames by combining columns?

To merge two DataFrames by combining columns, you can use the pd.concat() function or the .merge() method. For example, df3 = pd.concat([df1, df2], axis=1)

How do I combine text columns with a space in between in a DataFrame?

You can use the .str.cat() method with a space separator to combine text columns with a space in between. For example, df["comb_column"] = df["column1"].str.cat(df["column2"], sep = "-")

Can I customize the separator when combining columns?

You can customize the separator between the values of the combined columns. For example, you can use spaces, hyphens, underscores, or any other character as a separator. The .str.cat() method allows specifying a separator using the sep parameter.

Conclusion

In conclusion, you have learned various methods to combine two or multiple string columns in a Pandas DataFrame, including the + operator, DataFrame.map(), DataFrame.agg(), Series.str.cat(), and DataFrame.apply(). These techniques provide flexibility and efficiency for handling and manipulating text data within your DataFrame.

Happy Learning !!

References