The separate() function of the tidyr package in R is a versatile tool for data manipulation and cleaning. It splits a single character column in a data frame into multiple columns using a specified delimiter. This function is particularly useful when working with datasets where information is combined into one column but needs to be divided for further analysis.

Advertisements

In this article, I will explain the overview of the separate() function of the tidyr package. Using its syntax, parameters, and usage how we can separate the data frame single column into multiple columns based on the specified delimiter.

R separate() Function

The separate() function in R splits a specified column into multiple new columns based on a delimiter, allowing for easy reorganization of combined data. It offers flexibility with parameters like sep for custom delimiters, extra and fill for handling irregular splits, and remove for retaining or removing the original column.

Syntax of the separate() function

Following is the syntax of the separate() function.


# Syntax of the separate()
separate(data, col, into, sep = "[^"]", remove = TRUE, convert = FALSE, extra = "warn", fill = "warn")

Parameters

  • data: The data frame containing the column to be separated.
  • col: The name of the column to separate.
  • into: A character vector specifying the names of the new columns.
  • sep: The delimiter is used to split the column—defaults to non-alphanumeric characters.
  • remove: Logical; whether to remove the original column after separation. Defaults to TRUE.
  • convert: Logical; whether to convert the new columns to appropriate types. Defaults to FALSE.
  • extra: Specifies what to do if there are too many pieces. Options are “warn”, “drop”, or “merge”.
  • fill: Specifies how to handle missing pieces. Options are “warn”, “right”, or “left”.

Return Value

This function returns a modified data frame with the specified column separated into multiple columns.

Separate the R Column into Two Columns

To split a column into two using the separate() function with a specified delimiter, you first need to load the tidyr package in R. This package is a powerful tool for reshaping and transforming data, making it ready for further analysis.

Let’s create a data frame with a column that we plan to split using the separate() function.


# Seperate the column into two columns
# Load the tidyr library
library(tidyr)

# Create data frame
df <- data.frame(
  Student = c("Geetha", "Ram", "Sai"),
  History = c(89, 81, 78),
  Math = c(75, 88, 85),
  Science = c(85, 92, 90),
  Total_Percentage = c("249_83%", "261_87%", "253_84%")
)
print("Original Data frame:")
print(df)

Yields below output.

separate in r

Apply the separate() function to the above data frame to divide a specific column into two separate columns based on a specified delimiter.


# Separate the 'Total_Percentage' column
sep_data <- separate(
  df, 
  col = "Total_Percentage", 
  into = c("Total", "Percentage"), 
  sep = "_"
)

# Print the modified data frame
print("Data After Separation:")
print(sep_data)

Yields below output.

separate in r

Separate the R Column into Multiple Columns

The separate() function can split a single column into more than two columns. By using the sep parameter, which supports regular expressions, you can specify multiple delimiters to allow advanced splitting logic.


# Separate the column into multiple columns
sep_data <- separate(
  df,
  col = "Total_Percentage",
  into = c("Total", "Percentage", "Symbol"),
  sep = "_|(?=%)"
)

# Print the modified data frame
print("Data After Separation:")
print(sep_data)

For example, sep = "_|(?=%)" uses a combination of _ and % as delimiters.

Yields below output.


# Output:
[1] "Data After Separation:"
  Student History Math Science Total Percentage Symbol
1  Geetha      89   75      85   249         83      %
2     Ram      81   88      92   261         87      %
3     Sai      78   85      90   253         84      %

Handling Extra Values with extra Param

If the column contains more parts than specified, you can use the extra = "merge" parameter to combine the additional values into the last column. This advantage will ensure that no data is lost during the separation process.


# Handling extra values using extra param
# Load the tidyr library
library(tidyr)

# Original data frame with extra values
df <- data.frame(
  Student = c("Geetha", "Ram", "Sai"),
  Total_Percentage = c("249_83%_A", "261_87%_B", "253_84%_C")
)

# Separate the column, keeping the extra parts in the last column
extra_data <- separate(
  df, 
  col = "Total_Percentage", 
  into = c("Total", "Percentage", "Symbol"), 
  sep = "_|(?=%)", 
  extra = "merge"  
)

print("Handling Extra Values:")
print(extra_data)

Yields below output.


# Output:
[1] "Handling Extra Values:"

  Student Total Percentage Symbol
1  Geetha   249         83    %_A
2     Ram   261         87    %_B
3     Sai   253         84    %_C

Filling Missing Values with fill Param

If some rows in the specified column have fewer parts than expected, the fill parameter in the separate() function can be used to handle the missing parts by filling them with missing values (NA).


# Handle missing values using sepater fill param
# Load the tidyr library
library(tidyr)

# Original data frame with missing values
df <- data.frame(
  Student = c("Geetha", "Ram", "Sai"),
  Total_Percentage = c("249_83%", "261", "253_84%")
)

# Separate the column, filling missing parts
fill_data <- separate(
  df, 
  col = "Total_Percentage", 
  into = c("Total", "Percentage", "Symbol"), 
  sep = "_|(?=%)", 
  fill = "right"  # Fill missing parts with NA from the right
)

print("Filling Missing Values:")
print(fill_data
)

Yields below output.


# Output:
[1] "Filling Missing Values:"

> print(fill_data)
  Student Total Percentage Symbol
1  Geetha   249         83      %
2     Ram   261       <NA>   <NA>
3     Sai   253         84      %
)

Keep the Original Column with remove

You can retain the original column by setting remove = FALSE after completing the separation. This will keep the original column along with the separated columns.


# Keep the original column using remove param
# Load the tidyr library
library(tidyr)

# Original data frame
df <- data.frame(
  Student = c("Geetha", "Ram", "Sai"),
  Total_Percentage = c("249_83%", "261_87%", "253_84%")
)

# Separate the column, keeping the original column
keep_data <- separate(
  df, 
  col = "Total_Percentage", 
  into = c("Total", "Percentage", "Symbol"), 
  sep = "_|(?=%)", 
  remove = FALSE  # Keep the original column
)

print("Retaining the Original Column:")
print(keep_data)
)

Yields below output.


# Output:
[1] "Retaining the Original Column:"

> print(keep_data)
  Student Total_Percentage Total Percentage Symbol
1  Geetha          249_83%   249         83      %
2     Ram          261_87%   261         87      %
3     Sai          253_84%   253         84      %
)

Frequently Asked Questions of tidyr separate() Function

What is the purpose of the separate() function?

The separate() function is used to split a single column in a data frame into multiple columns based on a specified delimiter. It is commonly used for reorganizing and cleaning data that contains consolidated information.

What library is required to use the separate()?

The separate() function is part of the tidyr package in R. You can install the package using install.packages("tidyr") and load it with library(tidyr).

How do I specify the delimiter to split the column?

You can use the sep parameter to specify the delimiter. For example, sep = "_" splits the column at underscores, and sep = "_|(?=%)" can handle complex patterns using regular expressions.

What happens if the column contains more parts than expected?

The extra parameter controls this behavior:
"warn" (default): Issues a warning and drops extra parts.
"drop": Silently drops extra parts.
"merge": Combines extra parts into the last column.

How does the fill parameter handle missing values?

The fill parameter determines how to handle missing parts when some rows have fewer pieces than expected:
"warn" (default): Issues a warning and fills with NA.
"right": Fills missing values with NA on the right.
"left": Fills missing values with NA on the left.

Conclusion

In this article, I have explained the separate() function is a versatile and essential tool for splitting and cleaning data in R. By using its parameters—such as sep, extra, fill, remove, and convert—you can handle a variety of scenarios with ease. This function is indispensable for preparing datasets for deeper analysis, making it a must-know feature for any data professional working in R.

Happy learning!!

References